
Second addendum to III.4

Pages 351–353 of Munkres discuss an application of the Brouwer Fixed Point Theorem to a
result about matrices with nonnegative entries.

PERRON–FROBENIUS THEOREM. If A is an invertible 3×3 matrix over the real numbers
with nonnegative entries, it has a positive eigenvalue with an eigenvector whose coordinates are
all nonnegative. Furthermore, if the entries of the matrix are all positive, then it has a positive
eigenvalue with an eigenvector whose coordinates are all nonnegative.

The case of matrices with positive entries is discussed as Corollary 55.7, and the case of matrices
with nonnegative entries is mentioned as Exercise 3.

At the top of page 352 there is an assertion that if B denotes the intersection of S 2 with the
closed first octant in R

3 (points whose coordinates are all nonnegative), then “it is easy to show
that B is homeomorphic to the ball B2 [ = D2], so that the [Brouwer] fixed-point theorem holds
for continuous maps of B into itself (by Corollary III.4.3 in notes3.4.pdf). — Statements of the
form, “it is easy to show that,” are often misleading and should be interpreted as assertions that
something is intuitively clear but the proof might be long or inelegant. In the specific example, it
might not be difficult to conclude that the two spaces in question seem to be homeomorphic, but
writing down a rigorous proof turns out to be more complicated than one might expect. For the
sake of completeness we shall sketch a proof here.

One can interpret B geographically as the set of all points which are in the northern hemisphere
with longitude between 0◦ and 90◦E. This is a solid spherical triangle whose vertices are the three
standard basis vectors e1 = (1, 0, 0), e1 = (0, 1, 0) and e1 = (0, 0, 1); in Figure 1 on the last page
of this document, the set B is shaded in gray. The first step is to flatten B out into the solid
triangular region ∆ whose boundary triangle has the same three vertices. This triangle lies on the
plane defined by the equation x+ y + z = 1, and we can flatten out the spherical triangle using the
mapping

F (x, y, z) = 1

x+y+z
· (x, y, z) .

In order to justify this formula, we need to check that if (x, y, z) lies in the first octant and
x2 + y2 + z2 = 1, then x + y + z > 0; this implication is true because x2 + y2 + z2 = 1 implies
that at least one of the terms x2, y2, z2 is nonzero, which in turn implies that the corresponding
coordinate x, y, z is positive. Since the point lies in the first octant, if at least one coordinate is
positive then the sum x + y + z of the coordinates is also positive, and therefore the fraction on
the right hand side has a nonzero denominator. — One can now check directly that F defines a
continuous and 1–1 onto map from B to ∆ with inverse given by G(v) = |v|−1 · v, and since both
B and ∆ are closed bounded subsets of R

3 it follows that F is a homeomorphism.

The next step is to move and shrink the equilateral triangular set ∆ into a similar set T in D2

whose center is the origin and whose vertices all lie on the second triangle. We shall take the latter
to have vertices given by the complex numbers 1, ω = 1

2
(−1 +

√
3) and ω2 = 1

2
(−1 −

√
3) (see the

drawing at the end of this file). We claim that an explicit homeomorphism ∆ → T is given by the
formula

h(x, y, z) = xω + yω2 + z .

There are few things that must be verified. First, we must show that the point in question lies
in the solid triangular region of R

2 with vertices 1, ω and ω2. This is the region bounded by the
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lines u = − 1

2
and 1 − u ±

√
3 v = 0 which join the three pairs of vertices. More precisely, the

solid triangular region in R
2 with the given vertices is the set of all points (u, v) ∈ R

2 such that
− 1

2
≤ u ≤ 1 and

√
3 |v| ≤ 1 − u. If we write h(x, y, z) = (u(x, y, z), v(x, y, z)) then we have

u = 1 − 3

2
(x + y) , v =

√
3 · (x − y)

and it is a routine exercise to show that u and v satisfy the inequalities defining the solid triangular
region in the plane. This system of equations can be solved for x and y uniquely in terms of u and
v, and one can then check that if u and v satisfy the defining inequalities then we also have x, y ≥ 0
and z = 1−x− y ≥ 0. Therefore the mapping h is 1–1 onto, and the inverse function is continuous
by the usual determinant formulas for solving systems of two linear equations in two unknowns.

Finally, we need to show that T is homeomorphic to the unit disk D2. By construction, it is
contained in the unit disk. We shall define a homeomorphism from D2 to T using the fact that
polar coordinates yield a description ofo D2 as the quotient space of [0, 1] × [0, 2π] via the map
sending (r, θ) to (r cos θ, r sin θ); if we take the equivalence relation E whose equivalence classes are
{0} × [0, 2π], {r} × {0, 2π} for r > 0, and (r, θ) for r > 0 and 0 < θ < 2π, then the usual sorts of
arguments show that D2 is the topological quotient space of [0, 1] × [0, 2π]/E .

The center of the solid triangle T is the origin, which of course is also the center of D2,
and convexity considerations imply that T is contained in D2 (the set T is the smallest convex
subset containing the three vertices, and all three of these vertices lie in the boundary of D2).
Geometrically, a homeomorphism from D2 to T is given by taking a radial segment in the disk
and shrinking it linearly so that the center point is left fixed and the point of intersection with
the circle meets the point of intersection with the boundary of the solid triangular region. In the
Figure 2 on the next page, this shrinking of the larger segment to the smaller one is indicated by
colors (the dark and light pieces of similar colors are radial segments, and the dark pieces are their
images under the shrinking map).

The algebraic definition of the mapping σ : D2 → T has three cases:

σ[r, θ] =

(

r

cos θ −
√

3 sin θ
, θ

)

(

0 ≤ θ ≤ 2π

3

)

σ[r, θ] =
( r

2 cos θ
, θ

)

(

2π

3
≤ θ ≤ 4π

3

)

σ[r, θ] =

(

r

cos θ +
√

3 sin θ
, θ

)

(

4π

3
≤ θ ≤ 2π

)

In each case one needs to check that the denominator is greater than or equal to 1 in order to ensure
the formulas are valid (the denominators are never zero) and have the property that |σ[r, θ]| ≤ r.

To prove that σ defines a homeomorphism, it suffices to note that if λ is any continuous
function on [0, 2π] such that 0 < λ(θ) ≤ 1 then the map M(v) = λ(θ)v is continuous and 1–1, and
hence it defines a homeomorphism from D2 onto its image such that the origin is fixed (the domain
is compact and the image is a metric space).

To summarize, we have now shown that the original spherical triangle is homeomorphic to the
triangle in the plane of the three unit vectors, the latter is homeomorphic to a standard equilateral
triangle inscribed in the unit circle, and the inscribed triangle is homeomorphic to D2. Therefore we
have shown that the original spherical triangle is homeomorphic to D2, which was our objective.

GENERALIZATIONS. The Brouwer Fixed Point Theorem generalizes to continuous self-maps
of Dn for n ≥ 3, and the Perron-Frobenius Theorem generalizes to n×n matrices for n ≥ 4. Details
appear in Sections VII.1 and VII.2 of the following document:

http://math.ucr.edu/∼res/math205B-2012/algtop-notes.pdf
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Drawings for the preceding discussion 
 

The spherical triangle  B  in the discussion is the shaded portion of the sphere in the first 
drawing.  The vertices of this triangle are the standard unit vectors in coordinate space. 
 

 
 

Figure 1 

 

The second drawing depicts the equilateral triangular region  T  in the coordinate plane.   The 

vertices of this triangle are the complex cube roots of 1, and the discussion on the preceding 

two pages implies that  B  is homeomorphic to  T.  As indicated on the preceding pages, there 

is a homeomorphism from the solid unit disk to  T  which shrinks radial segments for the disk so 

that they become segments joining the center of the boundary triangle for  T  to points on that 
boundary.  
 

 
 

Figure 2 

 
 


