Solutions to Chapter 14 exercises

14.1 Consider the sequence $(1 / n)$ in $(0,1)$. This has no subsequence converging to a point of $(0,1)$ since the sequence $(1 / n)$, and hence every subsequence, converges in \mathbb{R} to 0 .
14.2 Suppose for a contradiction that the sequentially compact metric space (X, d) is not bounded. Choose any point $x_{0} \in X$. Then for any $n \in \mathbb{N}$ there exists a point in X, call it x_{n}, with $d\left(x_{n}, x_{0}\right) \geqslant n$. The sequace $\left(x_{n}\right)$ has no convergent subsequence, since any subsequence $\left(x_{n_{r}}\right)$ is unbounded $\left(d\left(x_{n_{r}}, x_{0}\right) \geqslant n_{r}\right)$. Hence X must be bounded.
14.3 Let A be a closed subset of a sequentially compact metric space X. Let $\left(x_{n}\right)$ be any sequence in A. Then $\left(x_{n}\right)$ is also a sequence in X, which is sequentially compact, so there is a convergent subsequence $\left(x_{n_{r}}\right)$. The point this converges to must lie in A since A is closed in X (see Corollary 6.30). Hence A is also sequentially compact.
14.4 Let A be a sequentially compact subspace of a metric space X, and let $x \in \bar{A}$. Then (see Exercise 6.26) there is a sequence $\left(a_{n}\right)$ of points in A converging to x. Since A is sequentially compact, there is some subsequence $\left(a_{n_{r}}\right)$ of $\left(a_{n}\right)$ converging to a point in A. But every subsequence of $\left(a_{n}\right)$ converges to x, so $x \in A$. This tells us that A is closed in X (see Proposition 6.11 (c)).
14.5 Let $\left(y_{n}\right)$ be a sequence in $f(X)$. For each $n \in \mathbb{N}$ there exists a point $x_{n} \in X$ such that $y_{n}=f\left(x_{n}\right)$. Since X is sequentially compact, there is some subsequence $\left(x_{n_{r}}\right)$ of (x_{n}) which converges to a point $x \in X$. Then by continuity of f the subsequence $\left(y_{n_{r}}\right)=\left(f\left(x_{n_{r}}\right)\right.$ converges in Y to $f(x)$ (see Exercise 6.25). Hence $f(X)$ is sequentially compact.
14.6 This follows from Exercise 14.5. For if $f: X_{1} \rightarrow X_{2}$ is a homeomorphism and X_{1} is sequentially compact then so is X_{2} by Exercise 14.5, since f is continuous and onto. Since the inverse of f is also continuous and onto, it follows likewise that if X_{2} is sequentially compact then so is X_{1}.
14.7 This follows from Exercises 14.5 and 14.2. For if $f: X \rightarrow Y$ is a continuous map of metric spaces and X is sequentially compact, then by Exercise 14.5 so is $f(X)$, and hence, by Exercise 14.2, $f(X)$ is bounded.
14.8 By Exercise 14.7 the function f is bounded, so its bounds do exist. Now $f(X)$ is a sequentially compact subspace of \mathbb{R} by Exercise 14.5 . Hence $f(X)$ is closed in \mathbb{R} by Exercise 14.4. But the bounds of a non-empty closed subset of \mathbb{R} are in the set by Exercise 6.9. This says that the bounds of $f(X)$ are in $f(X)$, which means that they are attained.
14.9 Suppose that $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are sequentially compact metric spaces. In $X \times Y$ we shall use the product metric d_{1} : recall that $d_{1}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)$. Let $\left(\left(x_{n}, y_{n}\right)\right)$ be any sequence in $X \times Y$. First, since X is sequentially compact there is a subsequence $\left(x_{n_{r}}\right)$ of $\left(x_{n}\right)$ converging to a point $x \in X$. Now consider the sequence $\left(y_{n_{r}}\right)$ in Y. Since Y is sequentially compact, there exists a subsequence $\left(y_{n_{r_{s}}}\right)$ of $\left(y_{n_{r}}\right)$ converging to a point $y \in Y$. Then $\left(x_{n_{r_{s}}}\right)$ is a subsequence of $\left(x_{n_{r}}\right)$ hence also converges to x. Consider the subsequence $\left(\left(x_{n_{r s}}, y_{n_{r_{s}}}\right)\right)$ of $\left(\left(x_{n}, y_{n}\right)\right)$. This converges to (x, y) : for let $\varepsilon>0$. Since $\left(x_{n r_{s}}\right)$ converges to x, there exists $S_{1} \in \mathbb{N}$ such that $d_{X}\left(x_{n r_{s}}, x\right)<\varepsilon / 2$ whenever $s \geqslant S_{1}$. Similarly there exists $S_{2} \in \mathbb{N}$ such that $d_{Y}\left(y_{n r_{s}}, y\right)<\varepsilon / 2$ whenever $s \geqslant S_{2}$. Put $S=\max \left\{S_{1}, S_{2}\right\}$. If $s \geqslant S$ then

$$
d_{1}\left(\left(x_{n r_{s}}, y_{n_{r_{s}}}\right),(x, y)\right)=d_{X}\left(x_{n r_{s}}, x\right)+d_{Y}\left(y_{n r_{s}}, y\right)<\varepsilon
$$

So $\left(\left(x_{n}, y_{n}\right)\right)$ has a subsequence converging to a point in $X \times Y$. This shows that $X \times Y$ is sequentially compact. (As we have seen, any 'product metric' will give the same answer.)
14.10 Suppose that the result is true for some $n \geqslant 1$, and let X be a bounded closed subset of \mathbb{R}^{n+1}. Then $X \subseteq[a, b]^{n+1}$ for some $a, b \in \mathbb{R}$, (by Exercise 5.7), and it is sufficient to prove that $[a, b]^{n+1}$ is sequentially compact, since X is closed in this space hence then also sequentially compact by Exercise 14.3. Now $[a, b]^{n}$ and $[a, b]$ are sequentially compact by inductive assumption and the allowed case $n=1$ respectively, so $[a, b]^{n+1}=[a, b]^{n} \times[a, b]$ is sequentially compact by Exercise 14.9.
14.11 Let $x_{n} \in V_{n}$ for each $n \in \mathbb{N}$. Since X is sequentially compact, there is a subsequence $\left(x_{n_{r}}\right)$ of $\left(x_{n}\right)$ converging to some point $x \in X$. Since the V_{n} are nested, $x_{n_{r}} \in V_{m}$ for all r such that $n_{r} \geqslant m$. But V_{m} is closed in X, so $x \in V_{m}$ (by Corollary 6.30). This is true for all $m \in \mathbb{N}$, so $x \in \bigcap_{n=1}^{\infty} V_{n}$ and this intersection is non-empty.
14.12 Suppose that C is relatively compact in a metric space (X, d), and recall that for present purposes this means that \bar{C} is sequentially compact. Now any sequence in C is also a sequence in \bar{C}, so it has a convergent subsequence. (In fact this subsequence converges to some point in $\bar{C})$.

Conversely suppose that every sequence in C has a convergent subsequence. We wish to show that \bar{C} is sequentially compact. Let $\left(x_{n}\right)$ be any sequence in \bar{C}. For each $n \in \mathbb{N}$, since $x_{n} \in \bar{C}$ there exists $y_{n} \in C$ such that $d\left(y_{n}, x_{n}\right)<1 / n$. Now consider the sequence $\left(y_{n}\right)$ in C. By hypothesis this has a convergent subsequence $\left(y_{n_{r}}\right)$, say converging to y. By Proposition 6.29, $y \in \bar{C}$. Now given any $\varepsilon>0$ there exists $R_{1} \in \mathbb{N}$ such that $d\left(y_{n_{r}}, y\right)<\varepsilon / 2$ whenever $r \geqslant R_{1}$ and there exists $R_{2} \in \mathbb{N}$ such that $1 / n_{r}<\varepsilon / 2$ whenever $r \geqslant R_{2}$. Put $R=\max \left\{R_{1}, R_{2}\right\}$. If $r \geqslant R$ then

$$
d\left(x_{n_{r}}, y\right) \leqslant d\left(x_{n_{r}}, y_{n_{r}}\right)+d\left(y_{n_{r}}, y\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Thus any sequence in \bar{C} has a subsequence converging to a point in \bar{C} - in other words \bar{C} is sequentially compact, so C is relatively compact.
14.13 The exercise does most of this! Following as suggested, we shall prove inductively that $\left[a, a_{i}\right] \subseteq A$ for $i=1,2, \ldots, a_{n}=b$. This is true for $i=1$ since $a_{0}=a \in A$, and since $a_{1}-a_{0}<\varepsilon$ where ε is a Lebesgue number for the cover $\{A, B\}$, we know that $\left[a_{0}, a_{1}\right]$ is contained in a single set of the cover, and this must be A since $A \cap B=\emptyset$. Suppose inductively that $\left[a, a_{i}\right] \subseteq A$ for some $i \in\{1,2, \ldots, n-1\}$. Then we can repeat the above argument with a replaced by a_{n-1} and deduce that also $\left[a_{n-1}, a_{n}\right] \subseteq A$. Hence $[a, b] \subseteq A$, so $\{A, B\}$ is not a partition of $[a, b]$ after all. So $[a, b]$ is connected.
14.14 If $U_{i}=X$ for some $i \in\{1,2, \ldots, n\}$ then any $\varepsilon>0$ is a Lebesgue number for \mathcal{U}, since for any $\varepsilon>0$, any set of diameter at most ε is contained in X and hence in U_{i}.
(i) Suppose now that $C_{i} \neq \emptyset$ for every $i \in\{1,2, \ldots, n\}$. Then continuity of the function $f_{i}: X \rightarrow \mathbb{R}$ defined by $f_{i}(x)=d\left(x, C_{i}\right)$ follows from Exercise 6.16 (c). Also, from the definition it follows that all the values of $f_{i}(x)$ are non-negative.
(ii) Continuity of f follows from continuity of each f_{i} and Proposition 5.17. Let $x \in X$. Since \mathcal{U} is a cover for $X, x \in U_{i}$ for at least one $i \in\{1,2, \ldots, n\}$ so x is not in $C_{i}=X \backslash U_{i}$. Now C_{i} is closed in X, so $f_{i}(x)=d\left(x, C_{i}\right)>0$ (by Exercise $6.16\left(\right.$ a)). But also $f_{j}(x) \geqslant 0$ for all $j \in\{1,2, \ldots, n\}$ so $f(x)>0$ as required.
(iii) By sequential compactness of X and Exercise 14.8 , there exists $\varepsilon>0$ such that $f(x) \geqslant \varepsilon$ for all $x \in X$.
(iv) Since there are just n values $d\left(x, C_{i}\right)$ it is clear that

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n} d\left(x, C_{i}\right) \leqslant \max \left\{d\left(x, C_{i}\right): i \in\{1,2, \ldots, n\}\right\}
$$

(v) For a given $x \in X$ let $\max \left\{d\left(x, C_{i}\right): i \in\{1,2, \ldots, n\}\right\}=d\left(x, C_{k(x)}\right)$. We prove that $B_{\varepsilon}(x) \subseteq U_{k(x)}$ where ε is as in (iii) above. For suppose $d(y, x)<\varepsilon$. Then $\varepsilon \leqslant f(x) \leqslant d\left(x, C_{k(x)}\right)$ so $d(y, x)<d\left(x, C_{k(x)}\right)$. This says $d(y, x)$ is less than the distance from x to $C_{k(x)}=X \backslash U_{k(x)}$, so $y \in U_{k(x)}$. Hence $B_{\varepsilon}(x) \subseteq U_{k(x)}$ as required. It follows that for any $x \in X$ there is a set $U \in \mathcal{U}$ such that $B_{\varepsilon}(x) \subseteq U$, so ε is a Lebesgue number for the cover \mathcal{U}.
14.15 If say $V_{n_{0}}$ is empty, then $\bigcap_{n=1}^{\infty} V_{n}=\emptyset$, whose diameter is 0 by definition. Likewise in this case $\operatorname{diam} V_{n_{0}}=0$ so $\inf \left\{\operatorname{diam} V_{n}^{n=1}: n \in \mathbb{N}\right\}=0$ also.

Suppose now that all the V_{n} are non-empty. (We already know from Exercise 14.11 that their intersection is non-empty.) Now $\bigcap_{n=1}^{\infty} V_{n} \subseteq V_{m}$ for any $m \in \mathbb{N}$, so $\operatorname{diam} \bigcap_{n=1}^{\infty} V_{n} \leqslant \operatorname{diam} V_{m}$. Hence $\operatorname{diam}\left(\bigcap_{n=1}^{\infty} V_{n}\right) \leqslant \inf \left\{\operatorname{diam} V_{m}: m \in \mathbb{N}\right\}=m_{0}$ say.

Conversely, m_{0} is a lower bound for the diameters of the V_{n}, so for any $\varepsilon>0$ and any $n \in \mathbb{N}$ we know that diam $V_{n}>m_{0}-\varepsilon$. Hence there exist points $x_{n}, y_{n} \in V_{n}$ such that $d\left(x_{m}, x_{n}\right)>m_{0}-\varepsilon$. Since X is sequentially compact, $\left(x_{n}\right)$ has a subsequence $\left(x_{n_{r}}\right)$ converging to a point $x \in X$, and then $\left(y_{n_{r}}\right)$ has a subsequence $\left(y_{n_{r s}}\right)$ converging to a point $y \in X$. Since $\left(x_{n_{r_{s}}}\right)$ is a subsequence of $\left(x_{n_{r}}\right)$ it too converges to x. Also, by continuity of the metric, $d\left(x_{n_{r_{s}}}, y_{n_{r_{s}}}\right) \rightarrow d(x, y)$ as $s \rightarrow \infty$. Hence $d(x, y) \geqslant m_{0}-\varepsilon$. Also, $x, y \in V_{n}$ for each $n \in \mathbb{N}$ since V_{n} is closed in X. Since this is true for all $n \in \mathbb{N}$, we have $x, y \in \bigcap_{n=1}^{\infty} V_{n}$. Hence diam $\bigcap_{n=1}^{\infty} V_{n} \geqslant m_{0}-\varepsilon$. But this is true for any $\varepsilon>0$, so $\operatorname{diam} \bigcap_{n=1}^{\infty} V_{n} \geqslant m_{0}$.

The above taken together prove the result.
14.16(a) Any element of $\bigcap_{n=1}^{\infty} V_{n}$ must be in V_{1}, so it is the function f_{m} for some $m \in \mathbb{N}$. But $f_{m} \notin V_{n}$ for $n>m$. So (a) holds.
(b) For any two distinct elements f_{l}, f_{m} of V_{n} we know that $d_{\infty}\left(f_{l}, f_{m}\right)=1$. This shows that $\operatorname{diam} V_{n}=1$.
(c) In this case, $\operatorname{diam} \bigcap_{n=1}^{\infty} V_{n}=0$, but $\inf \left\{\operatorname{diam} V_{n}: n \in \mathbb{N}\right\}=1$. So the conclusion of Exercise 14.15 fails. (We note that the space $\left\{f_{n}: n \in \mathbb{N}\right\}$ with the sup metric is not compact - see Example 14.23.)
14.17 (a) Let $x \in X$. We want to show that $x \in f(X)$. Consider the sequence $\left(x_{n}\right)$ in X defined by:

$$
x_{1}=x, \quad x_{n+1}=f\left(x_{n}\right) \text { for all integers } n \geqslant 1 .
$$

Since X is sequentially compact, there is a convergent subsequence, say $\left(x_{n_{r}}\right)$. Any convergent sequence is Cauchy, so given $\varepsilon>0$ there exists $R \in \mathbb{N}$ such that $\left|x_{n_{r}}-x_{n_{s}}\right|<\varepsilon$ whenever $s>r \geqslant R$, in particular $\left|x_{n_{R}}-x_{n_{r}}\right|$ whenever $r>R$. Now we use the isometry condition, iterated $n_{R}-1$ times, to see that $\left|x_{1}-x_{n_{r}-n_{R}+1}\right|<\varepsilon$ whenever $r \geqslant R$. But $x_{1}=x$ and $x_{n_{r}-n_{R}+1} \in f(X)$ whenever $r>R$. Hence $x \in \overline{f(X)}$. But X is compact and f is continuous, so $f(X)$ is compact. Also, X is metric hence Hausdorff, so $f(X)$ is closed in X. Hence $\overline{f(X)}=f(X)$. So $x \in f(X)$ for any $x \in X$, which says that f is onto. Hence f is an isometry. (b) We can apply (a) to the compositions $g \circ f: X \rightarrow X$ and $f \circ g: Y \rightarrow Y$ to see that these are both onto. Since $g \circ f$ is onto, g is onto. Similarly since $f \circ g$ is onto, f is onto. Hence both f and g are isometries.
(c) We just define $f:(0, \infty) \rightarrow(0, \infty)$ by $f(x)=x+1$.

