
Solutions to Chapter 14 exercises

14.1 Consider the sequence (1/n) in (0, 1). This has no subsequence converging to a point of

(0, 1) since the sequence (1/n), and hence every subsequence, converges in R to 0.

14.2 Suppose for a contradiction that the sequentially compact metric space (X, d) is not

bounded. Choose any point x0 ∈ X . Then for any n ∈ N there exists a point in X , call it xn ,

with d(xn, x0) � n. The sequnce (xn) has no convergent subsequence, since any subsequence

(xnr) is unbounded (d(xnr , x0) � nr ). Hence X must be bounded.

14.3 Let A be a closed subset of a sequentially compact metric space X . Let (xn) be any

sequence in A. Then (xn) is also a sequence in X , which is sequentially compact, so there is a

convergent subsequence (xnr). The point this converges to must lie in A since A is closed in X

(see Corollary 6.30). Hence A is also sequentially compact.

14.4 Let A be a sequentially compact subspace of a metric space X , and let x ∈ A . Then (see

Exercise 6.26) there is a sequence (an) of points in A converging to x. Since A is sequentially

compact, there is some subsequence (anr) of (an) converging to a point in A. But every subse-

quence of (an) converges to x, so x ∈ A. This tells us that A is closed in X (see Proposition

6.11 (c)).

14.5 Let (yn) be a sequence in f(X). For each n ∈ N there exists a point xn ∈ X such that

yn = f(xn). Since X is sequentially compact, there is some subsequence (xnr) of (xn) which

converges to a point x ∈ X . Then by continuity of f the subsequence (ynr) = (f(xnr) converges

in Y to f(x) (see Exercise 6.25). Hence f(X) is sequentially compact.

14.6 This follows from Exercise 14.5. For if f : X1 → X2 is a homeomorphism and X1 is

sequentially compact then so is X2 by Exercise 14.5, since f is continuous and onto. Since the

inverse of f is also continuous and onto, it follows likewise that if X2 is sequentially compact

then so is X1 .

14.7 This follows from Exercises 14.5 and 14.2. For if f : X → Y is a continuous map of metric

spaces and X is sequentially compact, then by Exercise 14.5 so is f(X), and hence, by Exercise

14.2, f(X) is bounded.

14.8 By Exercise 14.7 the function f is bounded, so its bounds do exist. Now f(X) is a

sequentially compact subspace of R by Exercise 14.5. Hence f(X) is closed in R by Exercise

14.4. But the bounds of a non-empty closed subset of R are in the set by Exercise 6.9. This

says that the bounds of f(X) are in f(X), which means that they are attained.



14.9 Suppose that (X, dX), (Y, dY ) are sequentially compact metric spaces. In X × Y we shall

use the product metric d1 : recall that d1((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′). Let ((xn, yn))

be any sequence in X × Y . First, since X is sequentially compact there is a subsequence (xnr)

of (xn) converging to a point x ∈ X . Now consider the sequence (ynr) in Y . Since Y is

sequentially compact, there exists a subsequence (ynrs
) of (ynr) converging to a point y ∈ Y .

Then (xnrs
) is a subsequence of (xnr) hence also converges to x. Consider the subsequence

((xnrs
, ynrs

)) of ((xn, yn)). This converges to (x, y): for let ε > 0. Since (xnrs) converges to

x, there exists S1 ∈ N such that dX(xnrs , x) < ε/2 whenever s � S1 . Similarly there exists

S2 ∈ N such that dY (ynrs, y) < ε/2 whenever s � S2 . Put S = max{S1, S2} . If s � S then

d1((xnrs , ynrs
), (x, y)) = dX(xnrs , x) + dY (ynrs, y) < ε.

So ((xn, yn)) has a subsequence converging to a point in X × Y . This shows that X × Y is

sequentially compact. (As we have seen, any ‘product metric’ will give the same answer.)

14.10 Suppose that the result is true for some n � 1, and let X be a bounded closed subset

of R
n+1 . Then X ⊆ [a, b]n+1 for some a, b ∈ R, (by Exercise 5.7), and it is sufficient to

prove that [a, b]n+1 is sequentially compact, since X is closed in this space hence then also

sequentially compact by Exercise 14.3. Now [a, b]n and [a, b] are sequentially compact by

inductive assumption and the allowed case n = 1 respectively, so [a, b]n+1 = [a, b]n × [a, b] is

sequentially compact by Exercise 14.9.

14.11 Let xn ∈ Vn for each n ∈ N. Since X is sequentially compact, there is a subsequence

(xnr) of (xn) converging to some point x ∈ X. Since the Vn are nested, xnr ∈ Vm for all r such

that nr � m. But Vm is closed in X , so x ∈ Vm (by Corollary 6.30). This is true for all m ∈ N,

so x ∈
∞⋂

n=1

Vn and this intersection is non-empty.

14.12 Suppose that C is relatively compact in a metric space (X, d), and recall that for present

purposes this means that C is sequentially compact. Now any sequence in C is also a sequence

in C , so it has a convergent subsequence. (In fact this subsequence converges to some point in

C ).

Conversely suppose that every sequence in C has a convergent subsequence. We wish to show

that C is sequentially compact. Let (xn) be any sequence in C . For each n ∈ N, since xn ∈ C

there exists yn ∈ C such that d(yn, xn) < 1/n. Now consider the sequence (yn) in C . By

hypothesis this has a convergent subsequence (ynr), say converging to y . By Proposition 6.29,

y ∈ C . Now given any ε > 0 there exists R1 ∈ N such that d(ynr , y) < ε/2 whenever r � R1

and there exists R2 ∈ N such that 1/nr < ε/2 whenever r � R2 . Put R = max{R1, R2} . If

r � R then
d(xnr , y) � d(xnr , ynr) + d(ynr , y) < ε/2 + ε/2 = ε.

Thus any sequence in C has a subsequence converging to a point in C - in other words C is

sequentially compact, so C is relatively compact.



14.13 The exercise does most of this! Following as suggested, we shall prove inductively that

[a, ai] ⊆ A for i = 1, 2, . . . , an = b. This is true for i = 1 since a0 = a ∈ A, and since

a1 − a0 < ε where ε is a Lebesgue number for the cover {A, B} , we know that [a0, a1] is

contained in a single set of the cover, and this must be A since A∩B = ∅ . Suppose inductively

that [a, ai] ⊆ A for some i ∈ {1, 2, . . . , n − 1} . Then we can repeat the above argument with

a replaced by an−1 and deduce that also [an−1, an] ⊆ A. Hence [a, b] ⊆ A, so {A, B} is not a

partition of [a, b] after all. So [a, b] is connected.

14.14 If Ui = X for some i ∈ {1, 2, . . . , n} then any ε > 0 is a Lebesgue number for U , since

for any ε > 0, any set of diameter at most ε is contained in X and hence in Ui .

(i) Suppose now that Ci �= ∅ for every i ∈ {1, 2, . . . , n} . Then continuity of the function

fi : X → R defined by fi(x) = d(x, Ci) follows from Exercise 6.16 (c). Also, from the definition

it follows that all the values of fi(x) are non-negative.

(ii) Continuity of f follows from continuity of each fi and Proposition 5.17. Let x ∈ X . Since

U is a cover for X , x ∈ Ui for at least one i ∈ {1, 2, . . . , n} so x is not in Ci = X \ Ui . Now

Ci is closed in X , so fi(x) = d(x, Ci) > 0 (by Exercise 6.16 (a)). But also fj(x) � 0 for all

j ∈ {1, 2, . . . , n} so f(x) > 0 as required.

(iii) By sequential compactness of X and Exercise 14.8, there exists ε > 0 such that f(x) � ε

for all x ∈ X .

(iv) Since there are just n values d(x, Ci) it is clear that

f(x) =
1

n

n∑
i=1

d(x, Ci) � max{d(x, Ci) : i ∈ {1, 2, . . . , n}}.

(v) For a given x ∈ X let max{d(x, Ci) : i ∈ {1, 2, . . . , n}} = d(x, Ck(x)). We prove that

Bε(x) ⊆ Uk(x) where ε is as in (iii) above. For suppose d(y, x) < ε . Then ε � f(x) � d(x, Ck(x))

so d(y, x) < d(x, Ck(x)). This says d(y, x) is less than the distance from x to Ck(x) = X \Uk(x) ,

so y ∈ Uk(x) . Hence Bε(x) ⊆ Uk(x) as required. It follows that for any x ∈ X there is a set

U ∈ U such that Bε(x) ⊆ U, so ε is a Lebesgue number for the cover U .

14.15 If say Vn0 is empty, then
∞⋂

n=1

Vn = ∅ , whose diameter is 0 by definition. Likewise in this

case diam Vn0 = 0 so inf{diam Vn : n ∈ N} = 0 also.

Suppose now that all the Vn are non-empty. (We already know from Exercise 14.11 that

their intersection is non-empty.) Now
∞⋂

n=1

Vn ⊆ Vm for any m ∈ N, so diam
∞⋂

n=1

Vn � diam Vm .

Hence diam

( ∞⋂
n=1

Vn

)
� inf{diam Vm : m ∈ N} = m0 say.



Conversely, m0 is a lower bound for the diameters of the Vn , so for any ε > 0 and any

n ∈ N we know that diam Vn > m0 − ε . Hence there exist points xn, yn ∈ Vn such that

d(xm, xn) > m0 − ε . Since X is sequentially compact, (xn) has a subsequence (xnr) converging

to a point x ∈ X , and then (ynr) has a subsequence (ynrs
) converging to a point y ∈ X .

Since (xnrs
) is a subsequence of (xnr) it too converges to x. Also, by continuity of the metric,

d(xnrs
, ynrs

) → d(x, y) as s → ∞ . Hence d(x, y) � m0 − ε . Also, x, y ∈ Vn for each n ∈ N

since Vn is closed in X . Since this is true for all n ∈ N, we have x, y ∈
∞⋂

n=1

Vn . Hence diam

∞⋂
n=1

Vn � m0 − ε . But this is true for any ε > 0, so diam

∞⋂
n=1

Vn � m0 .

The above taken together prove the result.

14.16(a) Any element of
∞⋂

n=1

Vn must be in V1 , so it is the function fm for some m ∈ N. But

fm �∈ Vn for n > m. So (a) holds.

(b) For any two distinct elements fl, fm of Vn we know that d∞(fl, fm) = 1. This shows that

diam Vn = 1.

(c) In this case, diam

∞⋂
n=1

Vn = 0, but inf{diamVn : n ∈ N} = 1. So the conclusion of Exercise

14.15 fails. (We note that the space {fn : n ∈ N} with the sup metric is not compact - see

Example 14.23.)

14.17 (a) Let x ∈ X . We want to show that x ∈ f(X). Consider the sequence (xn) in X

defined by:

x1 = x, xn+1 = f(xn) for all integers n � 1.

Since X is sequentially compact, there is a convergent subsequence, say (xnr). Any convergent

sequence is Cauchy, so given ε > 0 there exists R ∈ N such that |xnr − xns | < ε whenever

s > r � R , in particular |xnR
− xnr | whenever r > R . Now we use the isometry condition,

iterated nR − 1 times, to see that |x1 − xnr−nR+1| < ε whenever r � R . But x1 = x and

xnr−nR+1 ∈ f(X) whenever r > R . Hence x ∈ f(X). But X is compact and f is continuous,

so f(X) is compact. Also, X is metric hence Hausdorff, so f(X) is closed in X . Hence

f(X) = f(X). So x ∈ f(X) for any x ∈ X , which says that f is onto. Hence f is an isometry.

(b) We can apply (a) to the compositions g ◦ f : X → X and f ◦ g : Y → Y to see that these

are both onto. Since g ◦ f is onto, g is onto. Similarly since f ◦ g is onto, f is onto. Hence

both f and g are isometries.

(c) We just define f : (0, ∞) → (0, ∞) by f(x) = x + 1.


