SOLUTIONS TO EXERCISES FOR MATHEMATICS 145B - Part 1

Spring 2015

0.6 : Components

Additional exercises

1. (i) First of all, if C and D are connected subsets of X and Y respectively then $C \times D$ is connected, so $C \times D$ is contained in a component K. We shall prove that $C \times D=K$. Let p_{X} and p_{Y} be the projection maps onto the X and Y coordinates. Then the sets $p_{X}[K]$ and $p_{Y}[K]$ are connected subsets of X and Y respectively, and since $C \times D \subset Y$ we know that $C \subset p_{X}[K]$ and $D \subset p_{Y}[K]$. However, we also know that C and D are maximal connected subsets of X and Y, and therefore it follows that $C=p_{X}[K]$ and $D=p_{Y}[K]$. The latter equations imply that $K \subset C \times D$, and since we already have the reverse inclusion this yields the desired identity $K=C \times D$.
(ii) Exactly the same argument goes through with "arc component" replacing "connected component" and "arcwise connected" replacing "connected." The only properties of connectedness we are using are that a product of connected spaces is connected, a continuous image of a connected set is connected, and a connected component is a maximal connected subset. Each of these statements has a valid analog for arcwise connected spaces.
2. Let \mathcal{R} be the equivalence relation, let $x \in X$, and suppose that C_{x} is the equivalence class of x. The assumption means that if $y \in C_{x}$, then there is an open subset U_{y} such that $y \in U_{y}$ and $U_{y} \subset C_{x}$. Therefore we have

$$
C_{x}=\bigcup_{y \in C_{x}}\{y\} \subset \bigcup_{y \in C_{x}} U_{y} \subset C_{x}
$$

so that C_{x} is the union of the open sets U_{y} and hence is open in X.
Now the complement $X-C_{x}$ is a union of all the remaining equivalence classes, and therefore $X-C_{x}$ is also open. Therefore we have a decomposition of X into two disjoint open subsets, and one of them (namely, C_{x}) is nonempty. Since X is connected, the other subset must be empty. But this means that $X=C_{x}$ and hence X is connected.
3. We shall use the preceding exercise. Let \mathcal{A} be the equivalence relation whose equivalence classes are the arc components of U, let $x \in U$, and let C_{x} denote the arc component of U containing x. Assume further that U is connected. Given $y \in A_{x} \subset U$ choose $r(y)>0$ so that the open disk neighborhood $N_{r(y)}\left(y ; \mathbb{R}^{n}\right)$ is contained in U. This open disk neighborhood is arcwise connected, and since $y \in A_{x}$ it follows that $N_{r(y)}\left(y ; \mathbb{R}^{n}\right) \subset A_{x}$. Therefore the equivalence relation \mathcal{A} satisfies the condition in the preceding exercise, and by the conclusion of the latter we can conclude that \mathcal{A} has one equivalence class, which means that U is arcwise connected.
4. Let A denote the set described in the exercise, let C denote the unit circle defined by $x^{2}+y^{2}=1$, and consider the continuous mapping $f: C \times[1, \sqrt{2}] \rightarrow A$ which sends (z, c) to $c z$. We know that C is connected because it is the continuous image of the interval $[0,1]$ under the
mapping $\gamma(t)=(\cos 2 \pi t, \sin 2 \pi t)$, and therefore the product is connected. The mapping f is a homeomorphism with an explicit inverse given by sending v to $\left(|v|^{-1} v,|v|\right)$, and therefore it follows that A must also be arcwise connected.
5. Follow the hint. If $x, y \in \mathbb{R}^{n}-\{\mathbf{0}\}$ are linearly independent, then the line segment $t y+(1-t) x$ $(0 \leq t \leq 1)$ does not pass through $\mathbf{0}$ (if it did, then this would occur for some value of t such that $0<t<1$, so that $t y=((t-1) x$ and the vectors x and y would be linearly dependent), and hence x and y lie in the same arc component of $\mathbb{R}^{n}-\{\mathbf{0}\}$. Suppose now that x and y are linearly dependent, so that each is a nonzero multiple of the other. Since $n \geq 2$ there is some vector z such that x and z are linearly independent, and it follows immediately that y and z are also linearly independent. Two applications of the previous argument then show that x, y, z all lie in the same arc component. Thus in all cases we have shown that two arbitrary points $x, y \in \mathbb{R}^{n}-\{0\}$ always lie in the same arc component, which means that this space is arcwise connected.

To prove the result for the sphere, it suffices to note that S^{n-1} is the continuous image of $\mathbb{R}^{n}-\{\mathbf{0}\}$ under the mapping sending v to $|v|^{-1} \cdot v . ■$

I. Complete metric spaces

I. 1 : Definitions and Basic Properties

Problems from Munkres, § 43, p. $270-271$

1. (a) Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X and choose M so large that $m, n \geq M$ implies $\mathbf{d}\left(x_{m}, x_{n}\right)<\varepsilon$. Then all of the terms of the Cauchy sequence except perhaps the first $M-1$ lie in the closure of $N_{\varepsilon}\left(x_{M}\right)$, which is compact. Therefore it follows that the sequence has a convergent subsequence $\left\{x_{n(k)}\right\}$. Let y be the limit of this subsequence; we need to show that y is the limit of the entire sequence.

Let $\eta>0$ be arbitrary, and choose $N_{1} \geq M$ such that $m, n \geq N_{1}$ implies $\mathbf{d}\left(x_{m}, x_{n}\right)<\eta / 2$. Similarly, let $N_{2} \geq M$ be such that $n(k)>N_{2}$ implies $\mathbf{d}\left(x_{n(k)}, y\right)<\eta / 2$. If we take N to be the larger of N_{1} and N_{2}, and application of the Triangle Inequality shows that $n \leq N$ implies $\mathbf{d}\left(x_{n}, y\right)<\eta$. Therefore y is the limit of the given Cauchy sequence and X is complete.
(b) Take $U \subset \mathbb{R}^{2}$ to be the set of all points such that $x y<1$. This is the region "inside" the hyperbolas $y= \pm 1 / x$ that contains the origin. It is not closed in \mathbb{R}^{2} and therefore cannot be complete. However, it is open and just like all open subsets U of \mathbb{R}^{2} if $x \in X$ and $N_{\varepsilon}(x) \subset U$ then $N_{\varepsilon / 2}(x)$ has compact closure in U. .
4. There are two parts to the proof:
(i) Prove that the intersection $\cap_{n} A_{n}$ is nonempty.
(ii) Prove that the intersection $\cap_{n} A_{n}$ contains no more than one point.

We shall begin by proving the first statement. Choose a sequence of points a_{n} such that $a_{n} \in A_{n}$ for each n. CLAIM: This is a Cauchy sequence. - Let $\varepsilon>0$ and choose N such that $k \geq N$ implies $\operatorname{diam}\left(A_{k}\right)<\varepsilon$. Suppose now that $m, n \geq N$. Since $k \geq N$ implies $A_{k} \subset A_{N}$, we have $a_{m}, a_{n} \in A_{N}$, so that $d\left(a_{m}, a_{n}\right)<\varepsilon$ and hence $\left\{a_{n}\right\}$ is a Cauchy sequence. Since the underlying metric space is complete, this sequence has a limit which we shall call a.

To prove that the intersection is nonempty, it will suffice to show that $a \in \cap_{n} A_{n}$. As before, we know that $k \geq n$ implies that $A_{k} \subset A_{n}$, and therefore all but finitely many points in the sequence $\left\{a_{k}\right\}$ lie in A_{n}. Since

$$
\lim _{k \rightarrow \infty} a_{k}=\lim _{j \rightarrow \infty} a_{j+n}
$$

it follows that a is the limit of the second sequence; the values of the latter lie in A_{n}, and since A_{n} is closed in X it follows that the limit value a also lies in A_{n}. Since n was arbitrary, it follows that $a \in \cap_{n} A_{n}$.

To conclude the proof, we must show that the intersection contains at most one point. Suppose that $u, v \in \cap_{n} A_{n}$. Then $u, v \in A_{n}$ implies that $d(u, v) \leq \operatorname{diam}\left(A_{n}\right)$ for all n and hence that

$$
0 \leq d(u, v) \leq \lim _{n \rightarrow \infty} \operatorname{diam}\left(A_{n}\right)=0
$$

which means that $d(u, v)=0$ and hence $u=v$.■
6. (b) Suppose that X and Y have complete metrics d_{X} and d_{Y}. Consider the metric on $X \times Y$ defined by

$$
d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left(d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right) .
$$

With respect to this metric, a sequence $\left\{\left(p_{n}, q_{n}\right)\right\}$ has a limit if and only if the coordinates do, and in this case we have $\left(p_{n}, q_{n}\right) \rightarrow(p, q)$ where $x_{n} \rightarrow p$ and $y_{n} \rightarrow q$. This is true because $d_{\infty} \geq d_{X}, d_{Y}$ and $d_{\infty} \leq d_{X}+d_{Y}$.

Assuming that X and Y are complete, suppose that $\left\{\left(p_{n}, q_{n}\right)\right\}$ is a Cauchy sequence in the product. Then the inequality at the end of the previous paragraph implies that both $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are also Cauchy sequences, so that these sequences have limits p and q respectively. By the final statement in the preceding paragraph, it follows that $\left(p_{n}, q_{n}\right) \rightarrow(p, q)$, and therefore $X \times Y$ is complete with respect to the metric d_{∞}.
(c) We shall follow the hint in Munkres. By (b) we know that $X \times \mathbb{R}$ is complete in the d_{∞} metric, so it is only necessary to check that the graph of the function

$$
\varphi(x)=\frac{1}{d(x, X-U)}
$$

is a closed subset of $X \times \mathbb{R}$ (since φ is a continuous function we know that U is homeomorphic to the graph of φ); we should stress that we want to show that the graph is closed in $X \times \mathbb{R}$, and it is not enough to show that it is closed in $U \times \mathbb{R}$ (this is true by continuity and the fact that all spaces under consideration are Hausdorff).

Here is the proof that the graph of φ is closed in $X \times \mathbb{R}$: Suppose that we have a sequence $\left(x_{n}, \varphi\left(x_{n}\right)\right)$ in $U \times \mathbb{R}$ which converges to a point $(y, s) \in X \times \mathbb{R}$; we need to show that $y \in U$ and $s=\varphi(y)$. As in part (b), we know that $x_{n} \rightarrow y$ and $\varphi\left(x_{n}\right) \rightarrow s$. If $y \in U$ then by the continuity of φ we know that $s=\varphi(y)$, so it is only necessary to eliminate the possibility that $y \notin U$. In this case we have $d(y, X-U)=0$ because $X-U$ is closed in X and we also have $d\left(x_{n}, X-U\right) \rightarrow d(y, U)=0$. But the latter means that $\varphi\left(x_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$, which contradicts our assumption that $\varphi\left(x_{n}\right) \rightarrow s \in \mathbb{R}$. The source of his contradiction was our assumption that $y \notin U$, so this must be false. By the previous reasoning it follows that (y, s) lies in the graph of U and hence the latter is a closed subset of the complete metric space $X \times \mathbb{R}$

Note. For the sake of completeness, here is a proof that the graph G of a continuous function $f: X \rightarrow Y$ is homeomorphic to X. The graph is the image of the function $F: X \rightarrow X \times Y$
defined by $F(x)=(f(x), g(x))$; let $F_{0}: X \rightarrow G$ be the induced continuous mapping from X to $G \subset X \times Y$. This map is continuous and onto, and it is also 1-1 because $F(x)=F\left(x^{\prime}\right)$ implies the first coordinates of the latter are equal; since these first coordinates are x and x^{\prime}, it follows that $F(x)=F\left(x^{\prime}\right)$ implies $x=x^{\prime}$. Furthermore, the inverse to F_{0} is simply the coordinate projection sending (x, y) to x, so F_{0} also has a continuous inverse, and therefore F_{0} is a homeomorphism.

Additional exercises

1. Suppose that X is a discrete metric space and $\left\{a_{n}\right\}$ is a Cauchy sequence in X. Let N be such that $m, n \geq N$ implies $d\left(a_{m}, a_{n}\right)<1$. Since the neighborhoods of the form $N_{1}(p)$ are one point sets for all $p \in X$, it follows that $a_{m}=a_{n}$ for $m, n \geq N$; denote this common value by L. We then have that $k \geq N$ implies $d\left(a_{k}, L\right)=0$, so the sequence converges very strongly - for all but finitely many n we have $a_{n}=L$.■
2. Follow the hint, and try to see what a function in the intersection would look like. In the first place it has to satisfy $f(0)=1$, but for each $n>0$ it must be zero for $t \geq 1 / n$. The latter means that the $f(t)=0$ for all $t>0$. Thus we have determined the values of f everywhere, but the function we obtained is not continuous at zero. Therefore the intersection is empty. Since every function in the set A_{n} takes values in the closed unit interval, it follows that if f and g belong to A_{n} then $\|f-g\| \leq 1$ and thus the diameter of A_{n} is at most 1 for all n. In fact, the diameter is exactly 1 because $f(0)=1$.

For the sake of completeness, we should note that each set A_{n} is nonempty. One can construct a "piecewise linear" function in the set that is zero for $t \geq 1 / n$ and decreases linearly from the 1 to 0 as t increases from 0 to $1 / n$. (Try to draw a picture of the graph of this function!)
3. We start by justifying the assertion in the hint. If we divide both sides of the inequality $m \cdot d^{\prime}(x, y) \leq d(x, y)$ by m we obtain the inequality $\cdot d^{\prime}(x, y) \leq m^{-1} d(x, y)$, and if we divide both sides of the inequality $d(x, y) \leq M \cdot d^{\prime}(x, y)$ by M we obtain the inequality $M^{-1} \cdot d(x, y) \leq d^{\prime}(x, y)$. If we combine these we obtain

$$
M^{-1} \cdot d(x, y) \leq d^{\prime}(x, y) \leq m^{-1} \cdot d(x, y)
$$

This means that the assumptions in the exercise turn out to be symmetric with respect to d and d^{\prime}, which implies that we only need to show one direction of the implication; namely, if the metric is complete with respect to d, then it is also complete with respect to d^{\prime}.

Suppose that $\left\{x_{n}\right\}$ is a Cauchy sequence with respect to d^{\prime}. Let $\varepsilon>0$, and choose N so that $p, q \geq N$ implies $d^{\prime}\left(x_{p}, x_{q}\right)<M^{-1} \varepsilon$. Then we also have

$$
d\left(x_{p}, x_{q}\right) \leq M d^{\prime}\left(x_{p}, x_{q}\right)<M M^{-1} \varepsilon=\varepsilon
$$

which means that $\left\{x_{n}\right\}$ is also a Cauchy sequence with respect to d. Therefore the sequence has some limit L with respect to d. We claim that L is also the limit of the sequence with respect to d^{\prime}.

Once again let $\varepsilon>0$. Since $x_{n} \rightarrow x$ with respect to d, there is some K such that $k \geq K$ $\operatorname{implies} d\left(x_{k}, L\right)<m \varepsilon$. As before, we now also have

$$
d^{\prime}\left(x_{k}, L\right) \leq m^{-1} d\left(x_{k}, L\right)<m^{-1} m \varepsilon=\varepsilon
$$

which means that $\left\{x_{k}\right\}$ is also converges to L with respect to d^{\prime}, and consequently X is also complete with respect to d^{\prime}.

I. 2 : The Contraction Lemma

Additional exercises

1. Follow the hint. The fact that x is a root of the polynomial equation if and only if $f(x)=x$ follows by adding $1-x^{5}$ to both sides and then dividing both sides by 7. By construction $f(0)=\frac{1}{7}$, it is decreasing on $[0,1]$ because $f^{\prime}(x)=-\frac{5}{7} x^{4} \leq 0$ on that interval, and $f(0)=0$. These combine to show that f maps $[0,1]$ to itself. By the Mean Value Theorem, the hypothesis of the Contraction Lemma will be satisfied if $\left|f^{\prime}\right| \leq \alpha<1$ for some α satsifying $0<\alpha<1$, and the formula for f^{\prime} shows that we can take $\alpha=\frac{5}{7}$. Therefore by the Contraction Lemma there is a unique $a \in[0,1]$ such that $f(a)=a$, or equivalently $a^{5}+7 a-1=0$. Since $f(0) \neq 0$ and $f(1) \neq 1$, it follows that $0<a<1$.
2. Let $X=\mathbb{R}$ and let $f(x)=x+1$. Then $|f(x)-f(y)|=|x-y|$ but $f(x) \neq x$ for all x.
3. If $C<1$ then the conclusion is an immediate consequence of the Contraction Lemma. Suppose now that $C>1$. Since f is $1-1$ onto, it has an inverse which we shall call g. Since f and g are inverses, we know that $f^{\circ} g$ and $g \circ f$ are the identity mappings, and therefore we have

$$
d(x, y)=d(f(g(x)), f(g(y)))=C \cdot d(g(x), g(y))
$$

or equivalently $d(g(x), g(y))=C^{-1} d(x, y)$, where $C^{-1}<1$. Therefore by the Contraction Lemma there is a unique point $p \in X$ such that $g(x)=x$.

We shall conclude the argument by showing that $g(x)=x$ if and only if $f(x)=x$. This is true because $g(x)=x$ implies $x=f(g(x))=f(x)$ and similarly $f(x)=x$ implies $x=g(f(x))=g(x)$..

I. 3 : Completions

Additional exercises

1. Let X^{*} denote the completion of X. Then a subset $C \subset X$ is complete if and only if it is closed in X^{*}. Therefore we may prove the assertions in the exercise as follows:
(1) If $C_{1}, C_{2} \subset X$ are complete, then they are closed in X^{*} and hence their union is also closed in X^{*}. But this means that their union is complete.
(2) If $C_{\alpha} \subset X$ is complete for each α, then each such set is closed in X^{*} and hence their intersection is also closed in X^{*}. But this means that the intersection is also complete. \quad
2. In order to show that A is dense in Y it suffices to show that if $y \in Y$ and $\varepsilon>0$, then there is some $a \in A$ such that $d(y, a)<\varepsilon$. We know that X is dense in Y, and therefore if $\varepsilon>0$ there is some $x \in X$ such that $d(x, y)<\frac{1}{2} \varepsilon$, and likewise we know that A is dense in X, so that there is some $a \in A$ such that $d(a, x)<\frac{1}{2} \varepsilon$. By the Triangle Inequality we then have $d(a, y)<\varepsilon$, and therefore A is dense in Y. This means that Y is also a completion of A.
