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0.6 : Components

Additional exercises

1. (i) First of all, if C and D are connected subsets of X and Y respectively then C × D is
connected, so C ×D is contained in a component K. We shall prove that C ×D = K. Let pX and
pY be the projection maps onto the X and Y coordinates. Then the sets pX [K] and pY [K] are
connected subsets of X and Y respectively, and since C × D ⊂ Y we know that C ⊂ pX [K] and
D ⊂ pY [K]. However, we also know that C and D are maximal connected subsets of X and Y , and
therefore it follows that C = pX [K] and D = pY [K]. The latter equations imply that K ⊂ C × D,
and since we already have the reverse inclusion this yields the desired identity K = C × D.

(ii) Exactly the same argument goes through with “arc component” replacing “connected com-
ponent” and “arcwise connected” replacing “connected.” The only properties of connectedness we
are using are that a product of connected spaces is connected, a continuous image of a connected set
is connected, and a connected component is a maximal connected subset. Each of these statements
has a valid analog for arcwise connected spaces.

2. Let R be the equivalence relation, let x ∈ X, and suppose that Cx is the equivalence class of
x. The assumption means that if y ∈ Cx, then there is an open subset Uy such that y ∈ Uy and
Uy ⊂ Cx. Therefore we have

Cx =
⋃

y∈Cx

{y} ⊂
⋃

y∈Cx

Uy ⊂ Cx

so that Cx is the union of the open sets Uy and hence is open in X.

Now the complement X −Cx is a union of all the remaining equivalence classes, and therefore
X − Cx is also open. Therefore we have a decomposition of X into two disjoint open subsets, and
one of them (namely, Cx) is nonempty. Since X is connected, the other subset must be empty. But
this means that X = Cx and hence X is connected.

3. We shall use the preceding exercise. Let A be the equivalence relation whose equivalence
classes are the arc components of U , let x ∈ U , and let Cx denote the arc component of U containing
x. Assume further that U is connected. Given y ∈ Ax ⊂ U choose r(y) > 0 so that the open disk
neighborhood Nr(y)(y; Rn) is contained in U . This open disk neighborhood is arcwise connected,
and since y ∈ Ax it follows that Nr(y)(y; Rn) ⊂ Ax. Therefore the equivalence relation A satisfies
the condition in the preceding exercise, and by the conclusion of the latter we can conclude that A
has one equivalence class, which means that U is arcwise connected.

4. Let A denote the set described in the exercise, let C denote the unit circle defined by
x2 + y2 = 1, and consider the continuous mapping f : C × [1,

√
2] → A which sends (z, c) to cz.

We know that C is connected because it is the continuous image of the interval [0, 1] under the
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mapping γ(t) = (cos 2πt, sin 2πt), and therefore the product is connected. The mapping f is a
homeomorphism with an explicit inverse given by sending v to (|v|−1 v, |v|), and therefore it follows
that A must also be arcwise connected.

5. Follow the hint. If x, y ∈ R
n−{0} are linearly independent, then the line segment ty+(1−t)x

(0 ≤ t ≤ 1) does not pass through 0 (if it did, then this would occur for some value of t such that
0 < t < 1, so that ty = ((t−1)x and the vectors x and y would be linearly dependent), and hence x
and y lie in the same arc component of R

n−{0}. Suppose now that x and y are linearly dependent,
so that each is a nonzero multiple of the other. Since n ≥ 2 there is some vector z such that x and
z are linearly independent, and it follows immediately that y and z are also linearly independent.
Two applications of the previous argument then show that x, y, z all lie in the same arc component.
Thus in all cases we have shown that two arbitrary points x, y ∈ R

n − {0} always lie in the same
arc component, which means that this space is arcwise connected.

To prove the result for the sphere, it suffices to note that Sn−1 is the continuous image of
R

n − {0} under the mapping sending v to |v|−1 · v.

I . Complete metric spaces

I.1 : Definitions and Basic Properties

Problems from Munkres, § 43, p. 270 − 271

1. (a) Let {xn } be a Cauchy sequence in X and choose M so large that m, n ≥ M implies
d(xm, xn) < ε. Then all of the terms of the Cauchy sequence except perhaps the first M − 1 lie in
the closure of Nε(xM ), which is compact. Therefore it follows that the sequence has a convergent
subsequence {xn(k) }. Let y be the limit of this subsequence; we need to show that y is the limit
of the entire sequence.

Let η > 0 be arbitrary, and choose N1 ≥ M such that m, n ≥ N1 implies d(xm, xn) < η/2.
Similarly, let N2 ≥ M be such that n(k) > N2 implies d(xn(k), y) < η/2. If we take N to be
the larger of N1 and N2, and application of the Triangle Inequality shows that n ≤ N implies
d(xn, y) < η. Therefore y is the limit of the given Cauchy sequence and X is complete.

(b) Take U ⊂ R
2 to be the set of all points such that xy < 1. This is the region “inside”

the hyperbolas y = ± 1/x that contains the origin. It is not closed in R
2 and therefore cannot be

complete. However, it is open and just like all open subsets U of R
2 if x ∈ X and Nε(x) ⊂ U then

Nε/2(x) has compact closure in U .

4. There are two parts to the proof:

(i) Prove that the intersection ∩n An is nonempty.

(ii) Prove that the intersection ∩n An contains no more than one point.

We shall begin by proving the first statement. Choose a sequence of points an such that an ∈ An

for each n. CLAIM: This is a Cauchy sequence. — Let ε > 0 and choose N such that k ≥ N implies
diam(Ak) < ε. Suppose now that m,n ≥ N . Since k ≥ N implies Ak ⊂ AN , we have am, an ∈ AN ,
so that d(am, an) < ε and hence {an} is a Cauchy sequence. Since the underlying metric space is
complete, this sequence has a limit which we shall call a.
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To prove that the intersection is nonempty, it will suffice to show that a ∈ ∩n An. As before,
we know that k ≥ n implies that Ak ⊂ An, and therefore all but finitely many points in the
sequence {ak} lie in An. Since

lim
k→∞

ak = lim
j→∞

aj+n

it follows that a is the limit of the second sequence; the values of the latter lie in An, and since An

is closed in X it follows that the limit value a also lies in An. Since n was arbitrary, it follows that
a ∈ ∩n An.

To conclude the proof, we must show that the intersection contains at most one point. Suppose
that u, v ∈ ∩n An. Then u, v ∈ An implies that d(u, v) ≤ diam(An) for all n and hence that

0 ≤ d(u, v) ≤ lim
n→∞

diam(An) = 0

which means that d(u, v) = 0 and hence u = v.

6. (b) Suppose that X and Y have complete metrics dX and dY . Consider the metric on X ×Y
defined by

d∞
(

(x1, y1), (x2, y2)
)

= max
(

dX(x1, x2), dY (y1, y2)
)

.

With respect to this metric, a sequence {(pn, qn)} has a limit if and only if the coordinates do, and
in this case we have (pn, qn) → (p, q) where xn → p and yn → q. This is true because d∞ ≥ dX , dY

and d∞ ≤ dX + dY .

Assuming that X and Y are complete, suppose that {(pn, qn)} is a Cauchy sequence in the
product. Then the inequality at the end of the previous paragraph implies that both {pn} and
{qn} are also Cauchy sequences, so that these sequences have limits p and q respectively. By the
final statement in the preceding paragraph, it follows that (pn, qn) → (p, q), and therefore X × Y
is complete with respect to the metric d∞.

(c) We shall follow the hint in Munkres. By (b) we know that X × R is complete in the d∞

metric, so it is only necessary to check that the graph of the function

ϕ(x) =
1

d(x,X − U)

is a closed subset of X × R (since ϕ is a continuous function we know that U is homeomorphic to
the graph of ϕ); we should stress that we want to show that the graph is closed in X ×R, and it is
not enough to show that it is closed in U ×R (this is true by continuity and the fact that all spaces
under consideration are Hausdorff).

Here is the proof that the graph of ϕ is closed in X × R: Suppose that we have a sequence
(xn, ϕ(xn)) in U × R which converges to a point (y, s) ∈ X × R; we need to show that y ∈ U
and s = ϕ(y). As in part (b), we know that xn → y and ϕ(xn) → s. If y ∈ U then by the
continuity of ϕ we know that s = ϕ(y), so it is only necessary to eliminate the possibility that
y 6∈ U . In this case we have d(y,X − U) = 0 because X − U is closed in X and we also have
d(xn, X −U) → d(y, U) = 0. But the latter means that ϕ(xn) → +∞ as n → ∞, which contradicts
our assumption that ϕ(xn) → s ∈ R. The source of his contradiction was our assumption that
y 6∈ U , so this must be false. By the previous reasoning it follows that (y, s) lies in the graph of U
and hence the latter is a closed subset of the complete metric space X × R.

Note. For the sake of completeness, here is a proof that the graph G of a continuous function
f : X → Y is homeomorphic to X. The graph is the image of the function F : X → X × Y
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defined by F (x) = (f(x), g(x)); let F0 : X → G be the induced continuous mapping from X to
G ⊂ X × Y . This map is continuous and onto, and it is also 1–1 because F (x) = F (x′) implies the
first coordinates of the latter are equal; since these first coordinates are x and x′, it follows that
F (x) = F (x′) implies x = x′. Furthermore, the inverse to F0 is simply the coordinate projection
sending (x, y) to x, so F0 also has a continuous inverse, and therefore F0 is a homeomorphism.

Additional exercises

1. Suppose that X is a discrete metric space and {an} is a Cauchy sequence in X. Let N be
such that m,n ≥ N implies d(am, an) < 1. Since the neighborhoods of the form N1(p) are one
point sets for all p ∈ X, it follows that am = an for m,n ≥ N ; denote this common value by L.
We then have that k ≥ N implies d(ak, L) = 0, so the sequence converges very strongly — for all
but finitely many n we have an = L.

2. Follow the hint, and try to see what a function in the intersection would look like. In the
first place it has to satisfy f(0) = 1, but for each n > 0 it must be zero for t ≥ 1/n. The latter
means that the f(t) = 0 for all t > 0. Thus we have determined the values of f everywhere, but the
function we obtained is not continuous at zero. Therefore the intersection is empty. Since every
function in the set An takes values in the closed unit interval, it follows that if f and g belong to
An then ‖f − g‖ ≤ 1 and thus the diameter of An is at most 1 for all n. In fact, the diameter is
exactly 1 because f(0) = 1.

For the sake of completeness, we should note that each set An is nonempty. One can construct
a “piecewise linear” function in the set that is zero for t ≥ 1/n and decreases linearly from the 1
to 0 as t increases from 0 to 1/n. (Try to draw a picture of the graph of this function!)

3. We start by justifying the assertion in the hint. If we divide both sides of the inequality
m · d′(x, y) ≤ d(x, y) by m we obtain the inequality ·d′(x, y) ≤ m−1d(x, y), and if we divide both
sides of the inequality d(x, y) ≤ M ·d′(x, y) by M we obtain the inequality M−1 ·d(x, y) ≤ d′(x, y).
If we combine these we obtain

M−1 · d(x, y) ≤ d′(x, y) ≤ m−1 · d(x, y) .

This means that the assumptions in the exercise turn out to be symmetric with respect to d and
d′, which implies that we only need to show one direction of the implication; namely, if the metric
is complete with respect to d, then it is also complete with respect to d′.

Suppose that {xn} is a Cauchy sequence with respect to d′. Let ε > 0, and choose N so that
p, q ≥ N implies d′(xp, xq) < M−1ε. Then we also have

d(xp, xq) ≤ M d′(xp, xq) < M M−1ε = ε

which means that {xn} is also a Cauchy sequence with respect to d. Therefore the sequence has
some limit L with respect to d. We claim that L is also the limit of the sequence with respect to
d′.

Once again let ε > 0. Since xn → x with respect to d, there is some K such that k ≥ K
implies d(xk, L) < mε. As before, we now also have

d′(xk, L) ≤ m−1 d(xk, L) < m−1mε = ε
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which means that {xk} is also converges to L with respect to d′, and consequently X is also complete
with respect to d′.

I.2 : The Contraction Lemma

Additional exercises

1. Follow the hint. The fact that x is a root of the polynomial equation if and only if f(x) = x
follows by adding 1−x5 to both sides and then dividing both sides by 7. By construction f(0) = 1

7 ,
it is decreasing on [0, 1] because f ′(x) = − 5

7 x4 ≤ 0 on that interval, and f(0) = 0. These combine
to show that f maps [0, 1] to itself. By the Mean Value Theorem, the hypothesis of the Contraction
Lemma will be satisfied if |f ′| ≤ α < 1 for some α satsifying 0 < α < 1, and the formula for f ′

shows that we can take α = 5
7
. Therefore by the Contraction Lemma there is a unique a ∈ [0, 1]

such that f(a) = a, or equivalently a5 + 7a − 1 = 0. Since f(0) 6= 0 and f(1) 6= 1, it follows that
0 < a < 1.

2. Let X = R and let f(x) = x + 1. Then |f(x) − f(y)| = |x − y| but f(x) 6= x for all x.

3. If C < 1 then the conclusion is an immediate consequence of the Contraction Lemma. Suppose
now that C > 1. Since f is 1–1 onto, it has an inverse which we shall call g. Since f and g are
inverses, we know that f og and g of are the identity mappings, and therefore we have

d(x, y) = d
(

f(g(x)), f(g(y))
)

= C · d
(

g(x), g(y)
)

or equivalently d
(

g(x), g(y)
)

= C−1 d(x, y), where C−1 < 1. Therefore by the Contraction Lemma
there is a unique point p ∈ X such that g(x) = x.

We shall conclude the argument by showing that g(x) = x if and only if f(x) = x. This is true
because g(x) = x implies x = f(g(x)) = f(x) and similarly f(x) = x implies x = g(f(x)) = g(x).

I.3 : Completions

Additional exercises

1. Let X∗ denote the completion of X. Then a subset C ⊂ X is complete if and only if it is
closed in X∗. Therefore we may prove the assertions in the exercise as follows:

(1) If C1, C2 ⊂ X are complete, then they are closed in X∗ and hence their union is also closed
in X∗. But this means that their union is complete.

(2) If Cα ⊂ X is complete for each α, then each such set is closed in X ∗ and hence their
intersection is also closed in X∗. But this means that the intersection is also complete.

2. In order to show that A is dense in Y it suffices to show that if y ∈ Y and ε > 0, then there
is some a ∈ A such that d(y, a) < ε. We know that X is dense in Y , and therefore if ε > 0 there
is some x ∈ X such that d(x, y) < 1

2 ε, and likewise we know that A is dense in X, so that there
is some a ∈ A such that d(a, x) < 1

2
ε. By the Triangle Inequality we then have d(a, y) < ε, and

therefore A is dense in Y . This means that Y is also a completion of A.
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