
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 145B — Part 2

Spring 2015

II . Constructing and deconstructing spaces

II.1 : Disjoint unions

Additional exercises

1. (i) Suppose first that X and Y are discrete. Then every subset of X is open and likewise for
Y . Every subset of X q Y is given by a disjoint union A q B where A ⊂ X and B ⊂ Y . Since
X and Y are discrete, A and B are open subsets; by the definition of disjoint union topology this
means that A q B is open in X q Y . By the second sentence of this paragraph, this means that
every subset of X q Y is open, and this in turn means that X q Y must be discrete.

Conversely, suppose that X q Y is discrete. Then for each pair of subsets A ⊂ X and B ⊂ Y
we know that A q B is open. By the definition of disjoint union topology this means that A and
B are open in X and Y respectively. Since these subsets are aribtrary, it follows that every subset
of X is open and likewise for Y . This means that both X and Y are discrete spaces.

(ii) Since a subspace of a Hausdorff space is Hausdorff and X q Y contains subspaces homeo-
morphic to X and Y , it follows that each of the latter is Hausdorff if X q Y is.

Conversely, suppose that X and Y are Hausdorff, and let p and q be distinct points in X q Y .
Then there are three cases to consider: The two points p and q could both lie in X, they could
both lie in Y , or one could lie in X and the other in Y .

Suppose first that both point lie in X. Since X is Hausdorff there are disjoint open neighbor-
hoods of U and V of p and q in X; the corresponding subsets U q ∅ and V q ∅ are then disjoint
open neighborhoods of p and q in the disjoint union. Similarly, if both points lie in Y then disjoint
neighborhoods in Y yield disjoint neighborhoods in X qY (replace X with Y in the argument, and
also replace W q ∅ with ∅ q W ).

Suppose now that one point lies in X and the other in Y . Without loss of generality we might
as well assume that p ∈ X and q ∈ Y (switch the roles of p and q to get the other case). In this
case the disjoint neighborhoods are merely X q ∅ and ∅ q Y .

(iv) A finite union of compact subsets is compact, so if X and Y are compact then so is XqY .
Conversely, if X q Y is compact, then X and Y are compact because they are homeomorphic to
closed subspaces of X q Y .

2. Follow the hint. The restrictions of the “identity” to
[

0, 1

2

)

and
[

1

2
, 1

]

are continuous because
these are merely inclusion mappings. Therefore Proposition II.1.1 implies that the “identity” map
is continuous. However, if the reverse “identity” map

[0, 1] −→
[

0, 1

2

)

q
[

1

2
, 1

]
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were continuous, then the codomain would be compact and connected because it is the continuous
image of the compact connected space [0, 1]. Since the two pieces of the disjoint union are nonempty,
the codomain is not connected; similarly, by (iv) in the preceding exercise it is not compact.
Therefore the reverse “identity” map is not continuous and the mapping

[

0, 1

2

)

q
[

1

2
, 1

]

−→ [0, 1]

is not a homeomorphism.

3. (i) We shall first verify that f q g is continuous using Proposition II.1.1; in other words, we
shall show that the restrictions to X q ∅ ∼= X and ∅ q Y ∼= Y are continuous. By definition the
restriction to X is the composite of f : X → X ′ with the inclusion X ′ ∼= X q ∅ ⊂ X ′ q Y ′, so it is
a composite of continuous mappings and hence it is continuous. Likewise, the restriction to ∅ q Y
is the composite of g : Y → Y ′ with the inclusion ∅qY ′ ∼= Y ′ ⊂ X ′ qY ′, and hence this composite
is also continuous. Therefore f q g is continuous by Proposition II.1.1.

Since f and g are homeomorphisms, they have continuous inverses, and by the reasoning of
the preceding paragraph we know that f−1 q g−1 is continuous. We claim that

(f q g)
−1

= f−1 q g−1 .

In other words, we need to check that the composites

(f q g) o

(

f−1 q g−1
)

,
(

f−1 q g−1
)

o (f q g)

are the identity mappings on X ′ q Y ′ and X q Y respectively. Direct calculation shows that the
first composite evaluated at (x′, 1) or (y′, 2) is equal to (x′, 1) or (y′, 2) respectively, and similarly
for the second composite, and by the preceding sentence this implies that the continuous mappings
are inverses of each other.

(ii) Once again follow the hint. More precisely, we have

TY,X
oTX,Y (x, y) = TY,X(y, x) = (x, y) , TX,Y

oTY,X(y, x) = TX,Y (x, y) = (y, x)

so that TY,X
oTX,Y is the identity on X × Y and TX,Y

oTY,X is the identity on Y × X. Therefore
the two mappings are inverse to each other.

4. An open set in X1qX2 has the form W1qW2 where W1 is open in X1 and W2 is open in X2.
Since B1 and B2 are bases for the respective topologies, we have W1 = ∪α Uα where Uα ∈ B1 ∪{∅},
and we also have W2 = ∪β Vβ where Vβ ∈ B2 ∪ {∅}. These mean that

W1 q W2 = (∪α Uα q ∅)
⋃

(∪β ∅ q Vβ)

as asserted in the exercise.

5. An explicit map from (X q Y ) × Z to (X ×Z) q (Y ×Z) is given by α(x, 1; z) = (x, z; 1)
and α(y, 2; z) = (y, z; 2), and it is straightforward to verify that this map has an inverse sending
(x, z; 1) to (x, 1; z) and (y, z; 2) to (y, 2; z). We need to show that α is continuous and open. It will
suffice to show that images and inverse images of basic open subsets (under α) are open.

The basic open subsets of (X q Y ) × Z have the form (U q V ) × W where U, V,W are open
in X,Y,Z respectively. The image of such an open set under α is given by (U × W ) q (V × W ),
which is a basic open set in (X × Z) q (Y × Z). Therefore α sends open sets to open sets.
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The preceding discussion also implies that the inverse image of the basic open set (U ×
W ) q (V × W ) under α is equal to the basic open set (U q V ) × W , and hence the inverse
image of a basic open subset under α is a basic open set.

Combining these, we see that the map α is a homeomorphism from (X q Y ) × Z to (X ×
Z) q (Y × Z).

II.2 : Quotient spaces

Problem from Munkres, § 22, pp. 144 − 145

4. (a) The hint describes a well-defined continuous map from the quotient space W to the real
numbers. The equivalence classes are simply the curves g(x, y) = C for various values of C, and
they are parabolas that open to the left and whose axes of symmetry are the x-axis. It follows that
there is a 1–1 onto continuous map from W to R. How do we show it has a continuous inverse? The
trick is to find a continuous map in the other direction. Specifically, this can be done by composing
the inclusion of R in R

2 as the x-axis with the quotient projection from R
2 to W . This gives the

set-theoretic inverse to R
2 → W and by construction it is continuous. Therefore the quotient space

is homeomorphic to R with the usual topology.

(b) Here we define g(x, y) = x2 + y2 and the equivalence classes are the circles g(x, y) = C for
C > 0 along with the origin. In this case we have a continuous 1–1 onto map from the quotient
space V to the nonnegative real numbers, which we denote by [0,∞) as usual. To verify that this
map is a homeomorphism, consider the map from [0,∞) to V given by composing the standard
inclusion of the former as part of the x-axis with the quotient map R

2 → V . This is a set-theoretic
inverse to the map from V to [0,∞) and by construction it is continuous.

Additional exercises

1. We claim that every subset of X/R is both open and closed. But a subset of the quotient is
open and closed if and only if the inverse image has these properties, and every subset of a discrete
space has these properties.

2. Let α : A → A/R0 and ξ : X → X/R denote the quotient projections. Then j : A/R0 →
X/R is the unique mapping such that j oα = ξ|A, and therefore it is continuous by Theorem II.2.1.
The hypotheses imply that j is 1–1 and onto. Therefore it is only necessary to verify that j has a
continuous inverse.

The hypotheses on q imply that if uR v then q(u)R0 q(v), and by the definition of α this
means that α oq(u) = α oq(v). Therefore by Theorem II.2.1 there is a unique continuous mapping
r : X/R → A/R0 such that r oξ = α oq. We then have

r oj oα = r oξ|A = α oq|A = α o idA = α

which implies that r oj and the identity on A/R0 agree on the image of α. Since α is onto, it follows
that r oj is the identity map for A/R0.

Since the mapping r is continuous, it will suffice to prove that r is an inverse function to j;
by the preceding discussion, it only remains to prove that j or is the identity on X/R. By the last
sentence of the preceding paragraph, we know that j or oj = j = idX/R

oj, which means that j or
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and the identity on X/R agree on the image of j. But we know that j is onto, and therefore it
follows that j or is the identity map for X/R. As noted previously, this completes the proof that
A/R0 is homeomorophic to X/R.

3. (a) The relation is reflexive because x = 1 · x, and it is reflexive because y = αx for
some α 6= 0 implies x = α−1y. The relation is transitive because y = αx for α 6= 0 and z = βy for
y 6= 0 implies z = βαx, and βα 6= 0 because the product of nonzero real numbers is nonzero.

(b) Use the hint to define q; we may apply the preceding exercise if we can show that for each
a ∈ S2 the set q−1({a}) is contained in an R-equivalence class. By construction q(v) = |v|−1v, so
q(x) = a if and only if x is a positive multiple of a (if x = ρ a then |x| = ρ and q(x) = a, while if
a = q(x) then by definition a and x are positive multiples of each other). Therefore if xRy then
q(x) = ± q(y), so that r(x)R0 r(y) and the map

S2/[x ≡ ±x] −→ RP
2

is a homeomorphism.

4. Needless to say we shall follow the hints in a step by step manner.

Let h : D2 → S2 be defined by

h(x, y) = (x, y,
√

1 − x2 − y2 ).

Verify that h preserves equivalence classes and therefore induces a continuous map h on

quotient spaces.

To show that h is well-defined it is only necessary to show that its values on the R′-equivalence
classes with two elements are the same for both representatives. If π : S2 → RP

2 is the quotient
projection, this means that we need π oh(u) = π oh(v) if |u| = |v| = 1 and u = −v. This is
immediate from the definition of the equivalence relation on S2 and the fact that h(w) = w if
|w| = 1.

Why is h a 1 − 1 and onto mapping?

By construction h maps the equivalence classes of points on the unit circle onto the points of
S2 with z = 0 in a 1–1 onto fashion. On the other hand, if u and v are distinct points that are
not on the unit circle, then h(u) cannot be equal to ±h(v). The inequality h(u) 6= −h(v) follows
because the first point has a positive z-coordinate while the second has a negative z-coordinate.
The other inequality h(u) 6= h(v) follows because the projections of these points onto the first two
coordinates are u and v respectively. This shows that h is 1–1. To see that it is onto, recall that
we already know this if the third coordinate is zero. But every point on S2 with nonzero third
coordinate is equivalent to one with positive third coordinate, and if (x, y, z) ∈ S 2 with z > 0 then
simple algebra shows that the point is equal to h(x, y).

Finally, prove that RP
2 is Hausdorff and h is a closed mapping.

If the first statement is true, then the second one follows because the domain of h is a quotient
space of a compact space and continuous maps from compact spaces to Hausdorff spaces are always
closed. Since h is already known to be continuous, 1–1 and onto, this will prove that it is a
homeomorphism.

So how do we prove that RP
2 is Hausdorff? Let v and w be points of S2 whose images in

RP
2 are distinct, and let Pv and Pw be their orthogonal complements in R

3 (hence each is a 2-
dimensional vector subspace and a closed subset). Since Euclidean spaces are Hausdorff, we can find
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an ε > 0 such that Nε(v)∩Pv = ∅, Nε(w) ∩Pw = ∅, Nε(v) ∩Nε(w) = ∅, and Nε(−v)∩Nε(w) = ∅.
If T denotes multiplication by −1 on R

3, then these conditions imply that the four open sets

Nε(v), Nε(w), Nε(−v) = T (Nε(v)) , Nε(−w) = T (Nε(w))

are pairwise disjoint. This implies that the images of the distinct points π(v) and π(w) in RP
2 lie in

the disjoint subsets π [Nε(v) ] and π [Nε(w) ] respectively. These are open subsets in RP
2 because

their inverse images are given by the open sets Nε(v)∪Nε(−v) and Nε(w)∪Nε(−w) respectively.

5. One physical model for the quotient space construction is to pinch the top edge of the solid
square to the center point

(

1

2
, 1

)

(it might be helpful to draw a picture of this process). We can
do this continuously by linearly shrinking each horizontal segment [0, 1] × {y} in the square to the
segment centered at

(

1

2
, y

)

whose length is equal to 1 − y; in other words, at level y the linear
function sends 0 to 1

2
y and 1 to 1 − 1

2
y. Here is the explicit formula:

h(x, y) =
(

1

2
y + x(1 − y), y

)

.

By construction, this function is continuous.

One can now check directly that h maps the solid square onto the solid triangle, it sends the
top edge of the square to the top vertex of the triangle, and it is 1–1 on the set of all points
satisfying y < 1.

The preceding discussion shows that h induces a continuous 1–1 onto map h from X/R to the
closed triangular region. Since X is compact, the quotient is also compact, and since the triangular
region is a subset of R

2, it is Hausdorff. Since a 1–1 onto continuous map from a compact space
to a Hausdorff space is a homeomorphism, it follows that h is a homeomorphism from the quotient
space to the solid triangular region.

6. Let π : X → X/E be the quotient projection, and let U and V be open neighborhoods of the
equivalence classes [(0, 1)] and [(0, 2)] in X/E . We shall prove that U ∩ V is nonempty.

Since π is continuous, there are positive numbers δ1, δ2 > 0 such that π maps (−δ1, δ1) × {1}
into U and also maps (−δ2, δ2) × {2} into V . Let δ be the smaller of δ1 and δ2. Then the images
of (−δ, δ) × {1} and (−δ, δ) × {2} under the quotient map are the same; in particular, we have

π
(

1

2
δ, 1

)

= π
(

1

2
δ, 2

)

.

Since the left hand side belongs to π−1[U ] and the right hand side belongs to π−1[V ], it follows that
the given point lies in U ∩ V and therefore the latter must be nonempty. In fact, the intersection
contains infinitely many points, for 1

2
δ can be replaced by any positive real number η < δ.

Note. It might be useful to compare this with the more intuitive description of the example
on page 52 of Crossley (see Example 4.37).

7. Let p : X × Y → X be projection onto the first coordinate. Then uRv implies p(u) = p(v)
and therefore there is a unique continuous map X × Y/R → X sending the equivalence class of
(x, y) to x. Set-theoretic considerations imply this map is 1–1 and onto, and it is a homeomorphism
because p is an open mapping.
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