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IV. Homotopy groups

IV.1 : Pointed spaces

Additional exercises

1. (a) The only possible choice of base point for A is the point x which is a base point for X.
If x 6∈ A, then there is no way of making A into a pointed space such that the inclusion is a base
point preserving mapping.

(b) If a ∈ A, then the inclusion map i : A → X determines a map of pointed spaces from (A, a)
to (X, a).

2. (a) If pX
of and pY

of are base point preserving, then we have pX
of(w) = x and pY

of(w) = y,
which means that f(w) = (x, y) and hence f is base point preserving. Conversely, if f is base point
preserving, then the identities pX(x, y) = x and pY (x, y) = y show that the coordinate projections
are base point preserving; since a composite of base point preserving maps is also base point
preserving, it follows that pX

of and pY
of are base point preserving.

(b) The extra assumption implies that X × {y} and Y × {x} are closed in X × Y . Define h
by setting h|X × {y} = (f(t), y) and h|{x} × Y = (x, g(u)) for t ∈ X and u ∈ Y . Since f and
g are base point preserving, both formulas yield the value z and the intersection, which consists
only of the point (x, y), and since both subsets are closed it follows that h is a continuous mapping
with the required properties. To prove uniqueness, suppose that k also has these properties. By
hypothesis we then have k|X × {y} = (f(t), y) and k|{x} × Y = (x, g(u)), and therefore k = h,
proving uniqueness.

3. (a) If i(u) = i(v), then u = r oi(u) = r or(v) = v, so the mapping i is 1–1. Furthermore, if
a ∈ A then a = r(i(a)) implies that r is onto.

(b) We claim that A is the set of points on which the functions i or and idX have the same
values. First of all, if x ∈ A then x = i(x) = i(r(i(x))) = r(i(x)), so the two functions agree at
points of A. On the other hand, if x 6∈ A then r(x) 6∈ A, so that r(i(x)) 6∈ A and hence r oi(x) 6= x
in this case. Hence the set of points where the two functions agree is precisely A, and since X is
Hausdorff this implies that A must be a closed subset of X.

(c) If we take x = a, then we have i(a) = a and r(a) = r(i(a)) = a, so we have base point
preserving maps i : (A, a) → (X, a) and r : (X, a) → (A, a).

(d) Follow the hint. i of ' i og implies that f = r oi of ' r oi og = g.

4. (a) A map from P to X is completely determined by its value at q, and the map P → X
will be base point preserving if and only if f(q) = x. For the other direction, there is a unique
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constant map from X to P , and this map is necessarily base point preserving because there is only
one possible value for the function at any given point (namely, q).

(b) Follow the hint. We are assuming that there is a unique continuous base point preserving
mapping from (N,n) to itself. Since the identity mapping is always continuous, we know that this
is a map with the given property, so by the uniqueness of a continuous mapping (N,n) → (N,n) we
know that this must be the only continuous mapping from (N,n) to itself. If (P, q) is an arbitrary
one point(ed) space, then we know that there are unique continuous mappings α : (N,n) → (P ; q)
and β : (P, q) → (N,n). By the first two sentences of the argument the composite β oα from (N,n)
to itself is the identity on (N,n) and the composite α oβ from (P, q) to itself is the identity on (p, q).
Therefore α and β are inverses to each other, and in particular, α and β are 1–1 correspondences.
Since P consists of a single point, the same must be true for N .

IV.2 : Algebraic structure

Additional exercises

1. Both parts will follow fairly easily if we use the “algebraic properties up to homotopy” for
concatenation of curves.

(a) If α and β are endpoint preservingly homotopic, then α+(−β) and β+(−β) are base point
preservingly homotopic if we take the base point to be α(0) = β(0). Since the second contatenation
is also base point preservingly homotopic to a constant, the same is true for α+(−β). — Conversely,
suppose that the latter is base point preservingly homotopic to a constant curve C0. Then we have

[α]? = [α + C0]? = [α + (−β) + β]? = [C0 + β]? = [β]?

where [· · ·]? represents the endpoint (equivalently, base point) preserving homotopy class of the
curve.

(b) To see that the first statement implies the second, let γ be a base point preserving closed
curve in X. Then γ + γ is also a base point preserving closed curve in X, and hence [γ + γ]? = [γ]?
by the validity of the first statement. Equivalently, we have [γ] · [γ] = [γ] in the group π1(X,x).
More generally, if G is a group and u ∈ G satsifies u2 = u, then we have 1 = uu−1 = u2 u−1 = u,
and since [γ] was arbitrary it follows that the fundamental group must be trivial.

To see that the second statement implies the first, suppose that α and β are two curves joining
the same pair of points. Then α + (−β) is a base point preserving curve if we take the base point
to be α(0) = β(0), and hence it is base point preservingly homotopic to the constant curve C0 by
the validity of the second statement. We can now apply (a) to conclude that α and β are end point
preservingly homotopic.

2. Suppose that γ is a base point preserving closed curve, and consider the straight line homotopy
from γ to the constant curve C0 whose value is γ(0). The restriction of this homotopy to {1}×[0, 1] ⊂
S1 × [0, 1] is the constant map with value γ(0) because on this subset the homotopy is given by
γ(1) = (1 − t)γ(1) + tγ(1).

3. The induced map i∗ of fundamental groups is 1–1 because r oi is the identity on A, so that
i∗(u) = i∗(v) implies

u = (r o i)∗(u) = r∗i∗(u) = r∗i∗(v) = (r oi)∗(v) = v
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so that i∗ must be 1–1.

To prove the factorization statement, let y ∈ π1(X,x) and consider u = r∗(y) ∈ π1(A, x). If
v = i∗(u)−1y, then we have

r∗(v) = r∗
(
i∗(u)−1y

)
= r∗i∗(u)−1r∗(y) = u−1 · u = 1

so that v lies in the kernel of r∗ and y = i∗(u) · v has a factorization of the desired type. This
proves existence. To prove uniqueness, suppose that y = i∗(u1) · v1 = i∗(u2) · v2 where ui and vi

are given as before. We then have

r∗(y) = r∗i∗(u1) · r∗(v1) = r∗i∗(u2) · r∗(v2) .

The second and third expressions in this display simplify to u1 and u2, and therefore we must have
u1 = u2. But this means that

v1 = i∗(u1)
−1i∗(u1)v1 = i∗(u1)

−1y =

i∗(u2)
−1y = i∗(u2)

−1i∗(u2)v2 = v2

so that v1 = v2. Therefore there is only one factorization of y of the given form.

WARNING. In general the group elements i∗(u) · v and v · i∗(u) will not be equal.

IV.3 : Simple cases

Problem from Munkres, § 52, pp. 334 − 335

1. (b) One can use the same argument presented for Additional Exercise IV.2.2.

5. Let j : A ⊂ R
n be the inclusion mapping, and let k : R

n → Y be the continuous extension of
h. Then the induced homomorphisms of fundamental groups satisfy h∗ = k∗ oj∗. Since the domain
of k, which is also the codomain of j, is convex, we know that the domain of k∗, which is also the
codomain of j∗ is the trivial group. Therefore k∗, j∗ and their composite h∗ = k∗ oj∗ must be trivial
homomorphisms.

7. (a) In order to prove functional identities, one needs to show that the values of both sides of
the equation at every point s in the domain are the same. We apply this to verify the associativity,
neutral element and inverse identities in Ω(G, 1):

Associativity. For all s we have

{(f ⊗ g) ⊗ h}(s) =
(
f(s) · g(s)

)
· h(s) = f(s) ·

(
g(s) · h(s)

)
= {f ⊗ (g ⊗ h)}(s) .

Neutral element. If C1(t) = 1 for all t, then for all s we have

{f ⊗ C1}(s) = f(s) · 1 = f(s) , {C1 ⊗ f}(s) = 1 · f(s) = f(s) .

Inverses. If g(t) = f(t)−1 for all t, then for all s we have

{f ⊗ g}(s) = f(s) · g(s) = 1 = C1(s) , {g ⊗ f}(s) = g(s) · f(s) = 1 = C1(s) .
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(b) The crucial point to verify is that if f0 and g0 are endpoint preserving homotopic to f1 and
g1 respectively, then f0 ⊗ g0 is endpoint preserving homotopic to f1 ⊗ g1. If we know this, then we
can define a binary operation on π1(G, 1) by noting that there is a well defined binary operation
on the latter with [f ] ⊗ [g] = [f ⊗ g]. The associativity, neutral element and inverse identities will
then follow from the corresponding identities derived in (a).

To prove the statement in the preceding paragraph, note that if H and K are endpoint pre-
serving homotopies from f0 and g0 to f1 and g1 respectively, then H ⊗ K is endpoint preserving
homotopy from f0 ⊗ g0 to f1 ⊗ g1.

(c) Follow the hint. Direct computation yields the identity

f + g = (f + C1) ⊗ (C1 + g)

from which we find that [f ] · [g] = [f + C1] ⊗ [C1 + g] = [f ] ⊗ [g].

(d) For each value of s either {f + C1}(s) or {C1 + g}(s) is equal to 1, so these two curves
commute with respect to the “⊗” operation. Once again applying the reasoning in (c), we find
that [f ] ⊗ [g] = [g] ⊗ [f ] for all [f ] and [g]. The main conclusion of (c) now implies that [f [·[g] =
[f ] ⊗ [g] = [g] ⊗ [f ] = [g] · [f ].

Additional exercises

1. Follow the hint, and let g : [0, 1] → R be the unique lifting with g(0) = 0. If g(1) ≥ 1 or
g(1) ≤ −1, then the image of g contains [0, 1] or [−1, 0] by the Intermediate Value Property, and
therefore the mapping f = p og is onto. Since g(1) is an integer (it lifts f), it follows that g(1) = 0.
Therefore g defines a closed curve in R, and this closed curve must be base point preservingly
homotopic to a constant map. Since f = p og, it follows that the same conclusion holds for f .

COMMENT. Exercise 6.4 on page 116 of Crossley gives another approach to solving this prob-
lem. The method presented there is more general, but it involves a topic (stereographic projection;
see Proposition 6.5) which is not covered in this course.

2. First of all, note that the determinant function is a continuous function of its entries (in
fact, it is a polynomial), and therefore we have a continuous mapping det : GL(n, C) → C − {0}
which sends the identity matrix I to 1. If j : S1 → GL(n, C) is the inclusion map in the statement
of the exercise, then det oj(z) = z and hence the composite is just the usual inclusion of S1 in
C−{0} ∼= R

2−{0}. We know that this mapping is a homotopy equivalence, and therefore det∗ oj∗
is an isomorphism. One can now prove that j∗ is 1–1 as in the proof of the corresponding result
for retracts. Therefore it follows that π1(GL(n, C), I) contains an element of infinite order which
maps nontrivially to the generator of π1(C− {0}, 1) ∼= Z under the homomorphism induced by the
determinant mapping.

NOTE. One can prove that the determinant map induces an isomorphism of fundamental
groups for all n ≥ 1. Also, for n ≥ 3 the fundamental group for the group of invertible real matrices
GL(n, R) is cyclic of order 2 (if n = 2 the fundamental group is infinite cyclic, and for n = 1 the
fundamental group is trivial).
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IV.4 : Change of base point

Problem from Munkres, § 52, pp. 334 − 335

6. We shall use slightly different terminology,with γ∗ instead of γ̂ and hi instead of hxi
. In this

notation the goal is to prove the identity

(h oα)∗h0∗ = h1∗
oα∗ .

By definition the value of the left hand side at a class u ∈ π1(X,x0) represented by θ is equal to
the class

[(−h oα) + (h oθ) + (h oα)]

and by the identities −h oα = h o(−α) and h o(δ1 + δ2) = (h oδ1) + (h oδ2) the displayed class is
equal to

[h o((−α) + θ + α)] = h1∗[(−α) + θ + α]

and the conclusion follows because the last term is just h1∗
oα∗([θ]).

Additional exercises

1. There are two cases, depending upon the component in which z lies. One component U is an
open 2-disk, and the other V is the set defined by |z| > 1. The first of these is convex, so in this
case π1(R

2 − S1, z) ∼= π1(U, z) is trivial. The other component is homeomorphic to (1,∞) × S1 by
the map sending (t, w) to tw, so in this case π1(R

2 − S1, z) ∼= π1(V, z) ∼= π1((1,∞) × S1, tw) ∼= Z.

2. By Exercise 52.7 in Munkres we know that the fundamental group of G is abelian, and if
this is true then the isomorphism from π1(G, x) to π1(G, y) is independent of path for all x, y ∈ G
(recall that G is arcwise connected.

3. (a) The assumption p(e0) = b0 should be viewed as confirmation that E is nonempty (the
PLP is vacuously true for ∅ → B!). Given b ∈ B let α be a continuous curve joining b0 to b. By
the PLP there is a continuous curve β such that p oβ = α and β(0) = e0. It then follows that
b = α(1) = p oβ(1), so β(1) maps onto b. Since b was arbitrary, this means that p must be onto.

(b) Follow the hint. Let α : [0, 1] → B be a continuous curve with α(0) = b0, and let e0 be
as before. Define h(s, t) = α(s). Then the CHP implies the existence of a unique homotopy H
such that h = p oH and h(0, 0) = e0. If β(s) = H(s, 0), then β is a lifting of α with the required
properties, and this proves existence. To prove uniqueness, let δ be a lifting of α with the desired
properties and consider K(s, t) = δ(s). By the uniqueness of covering homotopies we must have
H = K (check that K satsifies all the conditions), and therefore we have δ(s) = K(s, 0) = H(s, 0) =
β(s), proving uniqueness.

4. (a) By the preceding exercise it suffices to prove the statement about the CHP. Suppose that
h : [0, 1]× [0, 1] → B×B ′ is a homotopy such that h(0, 0) = (y, y′), and let (x, x′) ∈ E×E′ be such
that p(x) = y and p′(x′) = y′. Denote the coordinate functions of h by h1 and h2. Since p and p′

have the CHP, there are unique covering homotopies H1 and H2 for h1 and h2 such that H1(0, 0) = x
and H2(0, 0) = x′. If K(s, t) = (H1(s, t), H2(s, t)), then (p × p′) oK(s, t) = (h1(s, t), h2(s, t)) for
all s and t with K(0, 0) = (x, x′). This proves the existence of a covering homotopy starting at
(x, x′). To prove uniqueness, suppose that L is a covering homotopy starting at (x, x′), and let L1
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and L2 be its coordinate functions. Then L1 and L2 are covering homotopies for h1 and h2 which
start at x and x′, so by the uniqueness part of the CHP it follows that L1 = H1 and L2 = H2.
Since elements of a Cartesian product are determined by their coordinates, it follows that L = K,
proving uniqueness.

(b) Suppose that we are given a homotopy h : [0, 1] × [0, 1] → B0, and let j : B0 → B be
the inclusion mapping. Since p has the CHP, if p(e0) = h(0, 0) then there is a unique homotopy
H ′ : [0, 1] × [0, 1] → E such that p oH ′ = j oh and H ′(0, 0) = e0. By construction, the image
of H ′ is contained in E0 = p−1[B0], and therefore H ′ actually defines a continuous mapping
H : [0, 1] × [0, 1] → E0. Furthermore, this map satisfies p0

oH = h, proving the existence of a
covering homotopy. To prove uniqueness, let K be a covering homotopy with K(0, 0) = e0, and let
J : E0 → E be the inclusion mapping. Since p has the covering homotopy property, the uniqueness
part of that property implies that J oH = J oK. Now J is an inclusion map, which means that it
is 1–1, and therefore J oH = J oK implies H = K, proving uniqueness.

5. (a) The first part of the preceding exercise and the results of Section III.1 imply that the map
p× p : R×R → S1 ×S1 has the PLP and CHP, and the second part of the preceding exercise then
implies the same conclusion for the restricted map (p × p)−1[X] → X.

(b) By definition, the iterated concatenation is given by partitioning [0, 1] into four pieces of
equal length and using i1 oθ, i2 oθ, −i1 oθ and −i2 oθ to define the curve on these pieces. We can use
these pieces to lift ∆ as follows: Over the first piece the lifting is given by the unique lifting of i1

oθ
starting at (0, 0); this lifting ends at (1, 0), so we then adjoin the unique lifting of i2 oθ starting at
(1, 0). The latter ends at (1, 1) so for the third piece, we take the unique lifting of −i1 oθ starting
at (1, 1). Since the third piece ends at (0, 1), we then take the unique lifting of −i2 oθ starting at
(0, 1). The latter ends at (0, 0), so we have shown that the lifting ∆ is the broken line curve going
first from (0, 0) to (1, 0), then from (1, 0) to (1, 1), then from (1, 1) to (0, 1) and finally from (0, 1)
to (0, 0). This is just the counterclockwise boundary curve for the square [0, 1] × [0, 1].

(c) The standard way of constructing a homeomorphism is by radial projection, and it is
illustrated in solutions04as15.pdf. It is convenient to replace the standard unit square by [−1, 1];
these two spaces are homeomorphic by the map sending (s, t) ∈ [0, 1] × [0, 1] to (2s − 1, 2t − 1) ∈
[−1, 1] × [−1, 1], and this homeomorphism sends the boundary of the first square to the boundary
of the second (in the first case the boundary is all points such that at least one coordinate lies
in {0, 1}, and in the second the boundary is all points such that at least one coordinate lies in
{−1, 1}). The radial projection map then sends a point z ∈ S1 to the unique point tz such that
t ≥ 1 and tz lies on the boundary of the square. Geometrically the description is fairly clear from
the picture, but we need to make everything precise mathematically.

The easiest way to do this is by means of polar coordinates; if we use the latter, the boundary
lines of the square are defined by the equations

r sin θ = ± 1 , r cos θ = ± 1

and the radial projection is defined as follows:

The point (1, θ) maps to (1/ cos θ, θ) if − π

4
≤ θ ≤ π

4
.

The point (1, θ) maps to (1/ sin θ, θ) if π

4
≤ θ ≤ 3π

4
.

The point (1, θ) maps to (−1/ cos θ, θ) if − 3π

4
≤ θ ≤ 5π

4
.

The point (1, θ) maps to (−1/ sin θ, θ) if 5π

4
≤ θ ≤ 7π

4
.
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One can (and should) check directly that the formulas give the same values when θ = π

4
, 3π

4
, 5π

4
,

and also that the value of the first function at − π

4
equals the value of the second function at 7π

4
.

Furthermore, since r ≥ 1 for points on the boundary ∂Q of the square, an inverse map is given
by sending a point z in the latter to |z|−1z ∈ S1. These observations combine to show that if R
is the equivalence relation on the interval

[
−π

4
, 7π

4

]
generated by the condition − π

4
≡ 7π

4
, then the

formulas define a homeomorphism from the quotient space, which is homeomorphic to S 1, onto the
boundary of the square.

(d) Let ϕ0 :
[
−π

4
, 7π

4

]
→ ∂Q be the parametrization in (c) which defines a homeomorphism

from S1 to ∂Q; since the values of ϕ0 at the endpoints are the same, we can extend ϕ0 to a periodic
function of period 2π over the entire real line. Now define ϕ1 to be the restriction of ϕ0 to the
interval J0 =

[
−π

4
, 7π

4

]
composed with the standard increasing linear homeomorphism from [0, 1]

to J0. Then ϕ1 and ∆ both map [0, 1] to the boundary of the square such that each subinterval
of [0, 1] defined by the partition 0 < 1

4
< 1

2
< 3

4
< 1 is sent to an edge of the square such that the

endpoints of the subintervals are sent to the vertices of ∂Q; given this, we can construct a straight
line homotopy between the two maps which is constant on each of the subinterval endpoints, and
this map can be composed with the standard homeomorphism from ∂Q to the boundary F of
[0, 1] × [0, 1]. This implies that ∆ represents a generator of π1(F, (0, 0)) ∼= Z.

We now follow the hint and show that the class of ∆ is also nontrivial in π1(Γ, (0, 0)) by
proving that F is a retract of Γ. If we define r as in the statement of the hint, then r(u, v) = (u, v)
if (u, v) ∈ [0, 1] × [0, 1], and therefore r|F is the identity.

(e) The fact that [∆] ∈ π1(Γ, (0, 0)) maps to [θ1][θ2][θ1]
−1[θ2]

−1 ∈ π1(S
1 ∨ S1, (1, 1)) follows

from (b). Suppose that the latter is trivial, so that there is a base point preserving homotopy
h : S1 → S1 ∨ S1 from q o∆ to the (base point preserving) constant map, where q : Γ → S1 ∨ S1 is
given as in (a). Since Γ → S1 ∨S1 has the CHP, we can lift h to a homotopy H : [0, 1]× [0, 1] → Γ.
By construction the restriction of h to the vertical edges {0, 1} × [0, 1] maps everything to the base
point, and therefore H is constant on each vertical edge. By the uniqueness statements in the CHP
we also know that the restriction of H to the bottom edge [0, 1] × {0} is equal to ∆, and since ∆
is a closed curve it follows that H maps both vertical edges to the base point. Finally, since h is
constant on the top edge [0, 1]×{1} it follows that the same is true for H, and therefore H defines
a base point preserving homotopy from ∆ to the constant map.

This is a contradiction because we know that [∆] is nontrivial in the fundamental group of
Γ. The source of this contradiction was our assumption that q o∆ was trivial in the fundamental
group of S1 ∨ S1, and hence the latter must be false; in other words, the class of ∆ in the latter is
nontrival, and therefore the fundamental group of S1 ∨ S1 must be nonabelian.

(f) We know that the fundamental group of S1 × S1 is Z×Z and hence is abelian. Therefore
in π1(S

1 × S1, (1, 1)) we have

[θ1][θ2][θ1]
−1[θ2]

−1 = [θ1][θ2][θ2]
−1[θ1]

−1 = [θ1][θ1]
−1

which is the trivial element of π1(S
1 × S1, (1, 1)).

7


