Solutions to Chapter 14 exercises

14.1 Consider the sequence (1/n) in (0, 1). This has no subsequence converging to a point of

(0, 1) since the sequence (1/n), and hence every subsequence, converges in R to 0.

14.2  Suppose for a contradiction that the sequentially compact metric space (X, d) is not
bounded. Choose any point xy € X. Then for any n € N there exists a point in X, call it z,,
with d(z,, o) = n. The sequnce (x,) has no convergent subsequence, since any subsequence
(2, ) is unbounded (d(z,,, o) = n,). Hence X must be bounded.

14.3 Let A be a closed subset of a sequentially compact metric space X. Let (z,) be any
sequence in A. Then (z,) is also a sequence in X, which is sequentially compact, so there is a
convergent subsequence (z,.). The point this converges to must lie in A since A is closed in X

(see Corollary 6.30). Hence A is also sequentially compact.

14.4 Let A be a sequentially compact subspace of a metric space X, and let # € A. Then (see
Exercise 6.26) there is a sequence (a,) of points in A converging to x. Since A is sequentially
compact, there is some subsequence (a,,) of (a,) converging to a point in A. But every subse-
quence of (a,) converges to x, so x € A. This tells us that A is closed in X (see Proposition
6.11 (c)).

14.5 Let (y,) be a sequence in f(X). For each n € N there exists a point z,, € X such that
Yn = f(x,). Since X is sequentially compact, there is some subsequence (z,,) of (x,) which
converges to a point x € X . Then by continuity of f the subsequence (y,.) = (f(x,,) converges

in Y to f(z) (see Exercise 6.25). Hence f(X) is sequentially compact.

14.6 This follows from Exercise 14.5. For if f : X; — X5 is a homeomorphism and X; is
sequentially compact then so is Xy by Exercise 14.5, since f is continuous and onto. Since the
inverse of f is also continuous and onto, it follows likewise that if X5 is sequentially compact
then so is X;.

14.7 This follows from Exercises 14.5 and 14.2. For if f: X — Y is a continuous map of metric
spaces and X is sequentially compact, then by Exercise 14.5 so is f(X), and hence, by Exercise
14.2, f(X) is bounded.

14.8 By Exercise 14.7 the function f is bounded, so its bounds do exist. Now f(X) is a
sequentially compact subspace of R by Exercise 14.5. Hence f(X) is closed in R by Exercise
14.4. But the bounds of a non-empty closed subset of R are in the set by Exercise 6.9. This
says that the bounds of f(X) are in f(X), which means that they are attained.



14.9 Suppose that (X, dx), (Y, dy) are sequentially compact metric spaces. In X x Y we shall
use the product metric dy: recall that d;((z, y), (', ¥')) = dx(z, ') + dy(y, y'). Let ((zn, yn))
be any sequence in X X Y. First, since X is sequentially compact there is a subsequence (z,,.)
of (z,) converging to a point « € X. Now consider the sequence (y,.) in Y. Since Y is
sequentially compact, there exists a subsequence (y,, ) of (y,,) converging to a point y € Y.
Then (z,, ) is a subsequence of (z,,) hence also converges to x. Consider the subsequence
((%n,,s Yn,,)) of ((zn, yn)). This converges to (x, y): for let ¢ > 0. Since (x,,,) converges to
x, there exists S € N such that dy(x,,,, ) < €/2 whenever s > S;. Similarly there exists
So € N such that dy (ynr,, y) < /2 whenever s > Sy. Put S = max{S;, So}. If s > S then

dl((l‘nrsa ynrs)v (ZE, y)) - dX(ans7 ZE) + dY(ynrsv y) <E.

So ((xn, yn)) has a subsequence converging to a point in X x Y. This shows that X x Y is

sequentially compact. (As we have seen, any ‘product metric’ will give the same answer.)

14.10 Suppose that the result is true for some n > 1, and let X be a bounded closed subset
of R"!. Then X C [a, b]"™! for some a, b € R, (by Exercise 5.7), and it is sufficient to
prove that [a, b|"™ is sequentially compact, since X is closed in this space hence then also
sequentially compact by Exercise 14.3. Now [a, b]" and [a, b] are sequentially compact by
inductive assumption and the allowed case n = 1 respectively, so [a, b]"™! = [a, b]" X [a, V] is

sequentially compact by Exercise 14.9.

14.11 Let z, € V,, for each n € N. Since X is sequentially compact, there is a subsequence
(2n,) of (z,) converging to some point x € X. Since the V,, are nested, z,, € V,, for all r such
that n, > m. But V,, is closed in X, so x € V,,, (by Corollary 6.30). This is true for all m € N,

50
SO T € ﬂ V,, and this intersection is non-empty.

n=1
14.12 Suppose that C' is relatively compact in a metric space (X, d), and recall that for present
purposes this means that C is sequentially compact. Now any sequence in C' is also a sequence
in C, so it has a convergent subsequence. (In fact this subsequence converges to some point in
0).

Conversely suppose that every sequence in C' has a convergent subsequence. We wish to show
that C is sequentially compact. Let (x,) be any sequence in C'. For each n € N, since x,, € C
there exists y, € C such that d(y,, x,) < 1/n. Now consider the sequence (y,) in C'. By
hypothesis this has a convergent subsequence (y,,), say converging to y. By Proposition 6.29,
y € C. Now given any ¢ > 0 there exists R; € N such that d(y,,, y) < £/2 whenever r > R,
and there exists Ry € N such that 1/n, < £/2 whenever r > Ry. Put R = max{R;, Ry}. If
r > R then

d(n,, y) < d(@n,, Yn,) + d(Yn,,y) <e/2+¢c/2=¢.
Thus any sequence in C' has a subsequence converging to a point in C - in other words C is

sequentially compact, so C' is relatively compact.



14.13 The exercise does most of this! Following as suggested, we shall prove inductively that
la, a;] € A for i = 1,2,...,a, = b. This is true for i = 1 since ap = a € A, and since
a; — ap < € where € is a Lebesgue number for the cover {A, B}, we know that [ag, a;] is
contained in a single set of the cover, and this must be A since AN B = (). Suppose inductively
that [a, a;] C A for some i € {1,2, ..., n—1}. Then we can repeat the above argument with
a replaced by a,_; and deduce that also [a,_1, a,] C A. Hence [a, b] C A, so {A, B} is not a

partition of [a, b] after all. So [a, b] is connected.

14.14 If U; = X for some ¢ € {1, 2, ..., n} then any ¢ > 0 is a Lebesgue number for U, since

for any € > 0, any set of diameter at most ¢ is contained in X and hence in Uj;.

(i) Suppose now that C; # 0 for every i € {1, 2, ..., n}. Then continuity of the function
fi : X — R defined by f;(z) = d(z, C;) follows from Exercise 6.16 (c). Also, from the definition

it follows that all the values of f;(x) are non-negative.

(ii) Continuity of f follows from continuity of each f; and Proposition 5.17. Let = € X . Since
U is a cover for X, x € U; for at least one i € {1, 2, ..., n} so z isnot in C; = X \ U;. Now
C; is closed in X, so fi(z) = d(z, C;) > 0 (by Exercise 6.16 (a)). But also f;(z) > 0 for all
je{l,2,...,n} so f(x) >0 as required.

(iii) By sequential compactness of X and Exercise 14.8, there exists ¢ > 0 such that f(z) > ¢

for all z € X.

(iv) Since there are just n values d(z, C;) it is clear that

de C;) < max{d(z, C;) :i € {1,2, ..., n}}.

(v) For a given x € X let max{d(z, C;) : © € {1, 2, ..., n}} = d(x, Crw)). We prove that
B.(x) € Ugz) where ¢ is as in (iii) above. For suppose d(y, x) < e. Then ¢ < f(z) < d(z, Ci())
so d(y, ) < d(z, Cy). This says d(y, x) is less than the distance from z to Cyy) = X \ Uk,
so0 y € Uy(z). Hence B.(x) C Uk(z) as required. It follows that for any x € X there is a set
U € U such that B.(z) C U, so ¢ is a Lebesgue number for the cover U.

14.15 If say V,,, is empty, then ﬂ V, = 0, whose diameter is 0 by definition. Likewise in this

n=1
case diam V,,, = 0 so inf{diam V,, : n € N} =0 also.
Suppose now that all the V,, are non empty. (We already know from Exercise 14.11 that
their intersection is non-empty.) Now ﬂ V, CV,, for any m € N, so diam ﬂ V, < diam V,,.

n=1 n=1

Hence diam <ﬂ Vn> < inf{diam V,, : m € N} = mq say.

n=1



Conversely, mg is a lower bound for the diameters of the V,,, so for any € > 0 and any
n € N we know that diam V,, > my — . Hence there exist points xz,, y, € V, such that
d(xp,, x,) > mo—e. Since X is sequentially compact, (x,) has a subsequence (x,,) converging
to a point € X, and then (y,,) has a subsequence (y,, ) converging to a point y € X.
Since (x,,,) is a subsequence of (z,,) it too converges to z. Also, by continuity of the metric,
d(n,,, Yn,,) — d(x, y) as s — oco. Hence d(x, y) > mo —e. Also, z,y € V, for each n € N

(o]
since V,, is closed in X . Since this is true for all n € N, we have x, y € ﬂ V,. Hence diam

n=1

(o] (o]
ﬂ V, = mgy — €. But this is true for any € > 0, so diam ﬂ V.= mg.
n=1 n=1

The above taken together prove the result.

14.16(a) Any element of ﬂ V., must be in Vj, so it is the function f,, for some m € N. But

n=1

fm & Vi, for n > m. So (a) holds.

(b) For any two distinct elements f;, f,, of V,, we know that du(f;, f,n) = 1. This shows that
diam V,, = 1.

(c) In this case, diam ﬂ V., =0, but inf{diamV,, : n € N} = 1. So the conclusion of Exercise

n=1
14.15 fails. (We note that the space {f, : n € N} with the sup metric is not compact - see
Example 14.23.)

14.17 (a) Let x € X. We want to show that z € f(X). Consider the sequence (z,) in X
defined by:

r1 =2, Tpy = f(x,) for all integers n > 1.

Since X is sequentially compact, there is a convergent subsequence, say (z,.). Any convergent
sequence is Cauchy, so given ¢ > 0 there exists R € N such that |z, — z,,| < & whenever
s > r > R, in particular |z,, — ,,.| whenever » > R. Now we use the isometry condition,
iterated np — 1 times, to see that |1 — xp,_pn,+1| < € whenever r > R. But z; = z and
Tnp—np+1 € f(X) whenever r > R. Hence x € W But X is compact and f is continuous,
so f(X) is compact. Also, X is metric hence Hausdorff, so f(X) is closed in X. Hence

f(X) = f(X). So xz € f(X) for any = € X, which says that f is onto. Hence f is an isometry.

(b) We can apply (a) to the compositions go f: X — X and fog:Y — Y to see that these
are both onto. Since go f is onto, g is onto. Similarly since f o g is onto, f is onto. Hence

both f and ¢ are isometries.

(c) We just define f: (0, co) — (0, 00) by f(x) =z + 1.



