1.B. Base 60 expansions of unit fractions

One can compute the Babylonian expansions for unit fractions of the form 1/n in very much the same way as one computes decimal expansions. We shall begin by reviewing the process for base 10.

The coefficients a_n in the decimal expansion

$$\frac{1}{n} = 0.a_1 a_2 a_3 \cdots$$

nay be determined recursively as follows: By long division we may write

$$10 = a_1 n + b_1$$

where b_1 is an integer satisfying $0 \le b_1 < n$. Note that since n is a positive integer it follows that $a_1 \le a_1 n \le 10$. To find the next coefficient we proceed as in long division, bringing down the term b_1 and finding a_2 and b_2 such that

$$10 b_1 = a_2 n + b_2$$

where now b_2 is an integer satisfying $0 \le b_2 < n$. Once again we have

$$a_2 n \leq 10 b_1 < 10 n$$

which implies that $0 \le a_2 < 10$. Using b_2 we may find a_3 and b_3 similarly, and so forth. If n evenly divides some power of 10, then eventually one obtains a remainder $b_k = 0$, and at that point all subsequent terms a_i and b_i will also be equal to zero.

The same procedure works for other bases, and in particular for base 60. Let's see exactly what happens if we apply it to a simple example:

Problem. Express 1/48 in Babylonian-type notation.

SOLUTION. In this case the first step is

$$60 = 48 a_1 + b_1$$

and the conditions imply that $a_1 = 1$ and $b_1 = 12$. At the next stage we have

$$720 = 60 \cdot 12 = 48 \cdot 15 + 0$$
.

This means that the first term in the expansion is 1 and the second is 15, or in the modern representation we have the sexagesimal fraction 0;1,15 as our answer.

Let's verify this:

$$\frac{1}{60} + \frac{15}{3600} = \frac{75}{3600} = \frac{1}{48}$$

In analogy with the base 10 case, this process always terminates after a finite number of steps if n evenly divides some power or 60, or equivalently if the only prime divisors of n are contained in the set $\{2, 3, 5\}$.

Another example. What is the expansion for 1/1000?

ANSWER. In this case the algorithm yields the expression 0;0,3,36 for the fraction in question. At the first step one obtains $a_1 = 0$ and $b_1 = 60$, while at the second step one obtains $a_2 = 3$ and $b_2 = 600$, and at the third step one obtains $a_3 = 36$ and $a_3 = 36$ and $a_4 = 36$.