
4.B. Tangent and normal lines to conics

Apollonius’ work on conics includes a study of tangent and normal lines to these curves. The
purpose of this document is to relate his approaches to the modern viewpoints based upon analytic
geometry and differential calculus.

Classification of conics up to congruence

Whenever one works with coordinate geometry, it is clearly useful to choose coordinate axes so
that the algebraic equations defining the objects of study are as simple as possible. Geometrically,
this essentially corresponds to the physical idea of moving the objects without changing their sizes
or shapes. Linear algebra provides a powerful method for interpreting rigid motions in terms
of coordinates. Specifically, if we define an abstract isometry of the coordinate plane R

2 as a
transformation T of the form

(

y1

y2

)

=

(

cos θ −ε sin θ
sin θ ε cos θ

)

·

(

x1

x2

)

+

(

b1

b2

)

where θ is some real number (often we assume 0 ≤ θ ≤ 2π), ε = ±1, and (b1, b2) is a fixed vector
in R

2, then two plane figures A and B are said to be congruent if there is an isometry T which
maps A onto B. Additional comments on this concept appear on pages 66–73 (= document pages
10–17) of the following online document:

http://math.ucr.edu/∼res/math133/geometrynotes2b.pdf

We are particularly interested in finding a short list of conics so that every such curve defined by
an equation of the form

Ax2
1 + 2Bx1x2 + Cx2

2 + Dx1 + Ex2 + F = 0

is congruent to one of the curves on the list. We need to impose some restrictions on the coefficients
in order to eliminate unwanted examples; for example, if A = B = C = 0, then we have a first
degree equation, and clearly we should find a way to eliminate such cases. If we do this, then basic
results from a second linear algebra course imply that every curve defined by such an equation is
congruent to an example with one of the following forms in which all coefficients except possibly F
are nonzero. In each case, we might as well assume that A is positive.

Ax2
1 + F = 0

Ax2
1 + Cx2

2 + F = 0

Ax2
1 + Ex2 = 0

This is just a notational reformulation of a result (the Rigid Change of Coordinates Theorem) on
page 80–81 of the following document:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

As indicated in the table on page 82 of the same document, the first equation defines either a line
or a pair of lines, and it is of no interest to us here. The third equation always defines a parabola.
However, the solutions to an equation of the second type depend upon the signs of the various
coefficients:
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(a) If C is positive and F ≤ 0, then the equation either defines a single point when F = 0
(the origin) or no points at all when F < 0, so this case is also of no interest to us.

(b) If C is positive and F > 0, then the equation defines and ellipse when C 6= A and a circle
when C = A.

(c) If C is negative and F 6= 0, then the equation defines a hyperbola.

(d) If C is negative and F = 0, then the equation defines a pair of lines which intersect at the
origin, so this case is also of no interest to us.

Thus we see that every conic of interest to us is congruent to either a parabola, an ellipse
(or circle), or a hyperbola given by a fairly standard equation, and as usual we may rewrite these
equations as follows:

(ELLIPSE)
x2

a2
+

y2

b2
= 1 (a, b > 0)

(HYPERBOLA)
x2

a2
−

y2

b2
= 1 (a, b > 0)

(PARABOLA) y = ax2 (a 6= 0)

Parametrizations of conics

The first point to note is that ellipses, hyperbolas and parabolas can all be represented by
parametrized curves of the form

s(t) =
(

x(t), y(t)
)

where x(t) and y(t) are differentiable functions; strictly speaking, a hyperbola is given by two
parametrized curves corresponding to its two branches, and we shall have to be a bit careful about
this as we proceed. In any case, the tangent line to the curve at the point s(t0) is represented
parametrically by s(t0) + u s′(t0), where s′(t0) is given by taking the derivatives of the coordinate
functions where x(t) and y(t). This parametric representation will define a line if s ′(t0) 6= (0, 0),
and we claim this is true for suitably defined parametrizations of ellipses, hyperbolas and parabolas.

Examples. 1. For the ellipse given by

x2

a2
+

y2

b2
= 1 (a, b > 0)

one has the parametrization (a cos t, b sin t), and for each t0 we have s′(t0) = (−a sin t0, b cos t0).
The right hand expression is never the zero vector because the sine and cosine functions are never
simultaneously zero.

2. If we now consider the hyperbola given by

x2

a2
−

y2

b2
= 1 (a, b > 0)

one has the parametrization (± a cosh t, b sinh t) in terms of the hyperbolic functions sinhu and
coshu; as noted before, this curve has two branches, and the ± signs correspond to parametrizations
of the pieces of the curve in the half-planes x ≥ 0 and x ≤ 0. For each t0 we have s′(t0) =
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(± a sinh t0, b cosh t0). The right hand expression is never the zero vector because the hyperbolic
cosine function is never zero (recall that cosh2 u − sinh2 u = 1).

3. Finally, for the the parabola y = ax2 (where a 6= 0) we have the graph parametrization
s(t) = (t, at2); in this case s′(t0) = (1, 2at0) and the latter is never zero because its first coordinate
is always nonzero.

Tangent lines to conics

Apollonius’ approach to tangent lines for conics is typical of Greek geometry, and it is based
upon the fact that such lines meet the curves only at the point of contact. This viewpoint is evident
in elementary geometry, where one views a tangent line to a circle as a line which meets the circle in
exactly one point. Experimetation with ellipses, parabolas and hyperbolas suggests that the same
is true for these curves. The purpose of this section is to prove this property using the definition
of tangent lines from calculus.

Our discussion of tangent lines will require the concept of the two open half-planes determined
by the line (less formally, the two sides of the line). Specifically, if the line is given by an equation
of the form f(x, y) = Lx +My +n = 0 where (L,M) 6= (0, 0), then two points (u0, v0) and (u1, v1)
not on the line are said to lie on the same half-plane (or side or the line) provided f(u0, v0) and
f(u1, v1) are either both positive or both negative; the points are said to lie on opposite half-planes
or sides if one is positive and the other is negative. For example, the two sides of the x-axis are
defined by the inequalities y > 0 and y < 0.

In our discussion below, we shall need to know that an isometry has the following two proper-
ties:

(1) If T is an isometry and L is a line which determines half-planes H+ and H−, then the
image of L under T is a line, say M, and T maps H+ and H− onto the two half-planes
determined by M.

(2) If T is an isometry and s(t) is a continuous parametrized curve such that s′(t0) is defined,
then the composite T os(t) also has these properties, and in fact (T os)′(t0) is equal to
T

(

s′(t0)
)

.

Both proofs are fairly straighforward and left to the reader.

Here is the result implying that all for each point p of a conic curve, all the remaining points
lie on one side of the tangent line at p; strictly speaking, one must modify this slightly in the
hyperbolic case so that the conclusion only implies to the unique branch of the hyperbola on which
p lies.

THEOREM. Suppose that Γ is either a parabola, a circle, an ellipse, or a branch of a hyperbola.

Let p be a point of Γ, and let L be the tangent line to Γ at p. Then all points of Γ except p lie on

ONE of the half-planes determined by L.

Proof. The argument splits into cases depending upon the type of the conic. Since tangents
and half-planes are preserved under isometries, it is enough to prove the results for the standard
examples of conics described above.

Suppose first that Γ is a parabola; we shall assume that in the equation y = ax2 the coefficient
a is positive; the other case will follow by the change of variables u = −x, v = y. Let (c, ac2) be
a point on the parabola, so that the tangent line is defined by the equation y − ac2 = 2ac(x − c).
We claim that all other points on the parabola belong to the half-plane defined by the inequality
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y − ac2 > 2ac(x − c). Let t be an arbitrary real parameter value; then the question is whether
at2 − ac2 is greater than 2ac(t − c) for t 6= c. But

(at2 − ac2) − 2ac(t − c) = at2 − 2act + ac2 = a(t − c)2

and the latter is clearly positive if t 6= c.

Now suppose that Γ is a circle or an ellipse with the parametrization (a cos t, b sin t). We shall
use the following result to describe the tangent line to the ellipse at a typical point:

If we are given a curve which satisfies an equation f(u, v) = 0 where f(u0, v0) = 0 but

∇f(u0, v0) 6= 0, then the tangent line to the curve at p = (u0, v0) is defined by the vector

equation ∇f(p) · (x − p) = 0, and the normal direction at p is determined by ∇f(p).

This can be found in nearly any calculus book which covers partial derivatives.

Applying the preceding result to the ellipse, we see that the normal direction to the ellipse
at a point (x0, y0) is given by (2x/a2, 2y/b2), and therefore the tangent line at the point p =
(a cos θ, b sin θ) is defined by the following equation:

(

2a cos θ

a2

)

(u − a cos θ) +

(

2b sin θ

b2

)

(v − b sin θ) = 0

We claim that the expression on the right hand side is negative for all points (u, v) on the ellipse
except for p. But if we make the substitution (u, v) = (a cos t, b sin t) in the expression on the left
hand side of the equation and simplify by cancellations of the form c2/c2 = 1, the left hand side
reduces to

(cos θ cos t − cos2 θ) + (sin θ sin t − sin2 θ) = cos(t − θ) − 1 .

This expression is always nonnegative, and it is zero if and only if t is an integral multiple of 2π;
since (u, v) = p if t is an integral of 2π, it follows that all other points of the ellipse lie on the same
side of the tangent line at p.

A similar analysis applies to the branches of the hyperbola. Since the change of variables
u = −x, v = y interchanges the two branches, by symmetry it will suffice to consider the right
hand branch on which x > 0 and the branch is parametrized by the curve (a cosh t, b sinh t). Suppose
that p has coordinates (a cosh t0, b sinh t0). Then as in the elliptical case the normal direction to
the hyperbola branch at a point (x0, y0) is given by the gradient expression (2x/a2, −2y/b2), and
therefore the tangent line at the point p = (a cosh t0, b sinh t0) is defined by the following equation:

(

2a cosh t0
a2

)

(u − a cosh t0) −

(

2b sinh t0
b2

)

(v − b sinh t0) = 0

If we now make the substitution (u, v) = (a cosh t, b sinh t) and simplify once again, we see that the
expression on the left side is equal to

(cosh t0 cosh t − cosh2 t0) − (sinh t0 sinh t − sinh2 t0) = cosh(t − θ) − 1 .

Since coshw ≥ 1 with equality if and only if w = 0, it follows as before that all points on the branch
of the hyperbola except for p must lie on the same side of the tangent line at p.
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Differential calculus and normal lines to curves

By definition, a normal line to a curve at a given point p on the curve is a line through p which
is perpendicular to the tangent line at p. Apollonius’ work on conics includes a study of normal
lines to these curves; it is based upon the observation that the shortest or longest distance from an
external point to a curve is a given by a line segment which is perpendicular to the tangent line to
the conic at the point of contact. For example, if the curve is a circle, then the line segment lies
in the line joining the external point to the center of the circle; by elementary geometry, we know
that this line is perpendicular to the tangent line at the point where the lines meet the circle. Our
goal here is to give a simple proof of the general fact using calculus and parametric equations and
vector representations for curves.

The relationship between normal lines and maximum or minimum distances is then given by
the following result:

PROPOSITION. Suppose that s(t) =
(

x(t), y(t)
)

is a parametrized curve such that the

coordinate functions x(t), y(t) are differentiable everywhere and for each value of t at least one of

x′(t), y′(t) is nonzero. Let p = (c, d) be a point not on the curve, and suppose that t0 is such that

the distance from s(t0) to p is minimized or maximized. Then the direction of the line joining these

two points is perpendicular to s′(t0).

Proof. We shall need the following vector differentiation identity from first year calculus:

(a · b)′ = a′ · b + a · b′

Since the distance between two points is nonnegative, the problem of maximizing or minimizing the
distance is equivalent to maximizing or minimizing the square of the distance, and using vectors
we can write the square of the distance between p and a point s(t) on the curve as

δ2(t) = (s(t) − p) · (s(t) − p) .

We can now use differential calculus to search for a minimum by setting δ ′

2(t) = 0, and if we apply
the previously stated differentiation identity to the expression for δ2 we obtain

0 = δ′2(t) = 2 s′(t) · (s(t) − p) .

Since s(t) − p is the direction of the line joining s(t) and p, this is exactly the conclusion that we
want.

The proof of the proposition has the following simple implication.

PROPOSITION. Suppose that s(t) =
(

x(t), y(t)
)

is a parametrized curve such that the

coordinate functions x(t), y(t) are differentiable everywhere and for each value of t at least one of

x′(t), y′(t) is nonzero. Let p = (c, d) be a point not on the curve, and let δ2(t) denote the square

of the distance from p to s(t). Then t0 is a critical point of δ2 if andn only if the direction of the

line joining p to s(t0) is perpendicular to s′(t0).

This is an immediate consequence of the formula for δ ′2(t).

Critical points of squared distance functions

Let Γ be a nonsingular conic, and let p be a point in the plane. The first goal is to show that
the squared distance function δ2 always has an absolute minimum and therefore always has at least
one critical point.
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The case of an ellipse. In this case the distance squared function δ2 satisfies the periodicity
identity δ2(t + 2π) = δ2(t), so over the interval [0, 2π] it has both maximum and minimum values.
Since δ2 is periodic, these are maximum and minimum values for the function over the entire real
line.

The case of a parabola. In this case δ2(t) is a fourth degree polynomial whose highest
degree term has the form a4t4 where a 6= 0. Every such polynomial function has an absolute
minimum value over the entire real line; in particular, we have lim t → ±∞ δ2(t) = +∞ (the
same is true for every even degree polynomial function for which the coefficient of the highest degree
term is positive).

The case of a branch of a hyperbola. We shall only consider the branch of the standard
hyperbola which lies in the half-plane x > 0; symmetry conditions will imply the same sorts of
conclusions for the other branch. — If p = (c, d), then δ2(t) = (cosh t − c)2 + (sinh t − d)2 ≤
(cosh t − c)2, and since the right hand side goes to infinity as t → ±∞, we can argue as in the
parabolic case that δ2 has an absolute minimum over the real line: Specifically, let v be some value
that δ2 takes, and using the limit property choose M > 0 so large that δ2(t) ≥ v + 1 for |t| ≥ M .
Then δ2 takes an absolute minimum value on the interval [−M,M ], and by choice of M this value
is taken at an interior point of the interval. Since this minimum value is no greater than v and
δ2(t) > v if |t| ≥ M , this minimum must be the minimum value of the function over the entire real
line.

Counting normals from a point to a conic. Having shown that there is always at least
one normal to a conic through a given point in the plane, it is natural to ask two further questions:

(1) Given a point p and a conic Γ, how many normals to Γ pass through the point p?

(2) Given a point p on the conic Γ and a normal line L to Γ through p, are there other points
q on L ∩ Γ such that L is also a normal to Γ at q?

There are simple answers to both questions if the conic is a circle.

PROPOSITION. Let Γ be a circle, and let p be a point in the coordinate plane.

(i) If p is the center of Γ, then every line through p is a normal to Γ.

(ii) If p is not the center of Γ, then there is exactly one normal line to Γ through p, and it

contains the center of the circle.

In either case, if L is a line through p which is normal to Γ, then L meets Γ in a second point

q and is also a normal to Γ at q.

Proof. The final statement follows from the preceding two because every the latter show that
every normal line through Γ passes through the center of the circle, so that every such line meets
the circle at two points and is normal to the circle at each of these points.

Statement (i) follows because tangent lines to a circle are perpendicular to radial lines at their
points of contact. To prove (ii), we first use an isometry to find a congruent circle centered at the
origin and note that it will suffice to prove the result for the resulting circle, which has an equation
of the form x2 + y2 = r2 for some r > 0. We are assuming that p is not the center, so we may set
p equal to (b cos α, b sin α) where b > 0 and α is some real number.

There are two cases, depending upon whether or not p lies on the given circle. If p lies on the
circle, then the radial line through p is the unique line through p which is perpendicular to the
tangent line at p, and since it passes through the center of the circle the conclusion of (ii) is true
in this case.
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Suppose now that p does not lie on the given circle, so that b 6= r. For each point (r cos θ, r sin θ)
on the circle, the direction of the normal line is determined by the vector (sin θ,− cos θ), and
therefore the line joining p to (r cos θ, r sin θ) is perpendicular to the circle at the latter point if
and only if

0 = (sin θ,− cos θ) · (b cos α − r cos θ, b sinα − r sin θ) .

Since (cos θ, sin θ) and (sin θ,− cos θ) are perpendicular, this equation reduces to

0 = b cos α sin θ − b sinα cos θ = b sin(θ − α)

and since b 6= 0 the latter reduces to sin(θ − α) = 0, which is true if and only if θ − α is an
integral multiple of π. Since sin(α + π) = − sinα and cos(α + π) = − cosα, it follows that a
normal line to the circle through p = (b cos α, b sin α) meets the circle at either (r cos α, r sinα) or
(−r cos α,−r sinα). But the line through p and one of these points also goes through the other
and through the center of the circle, which implies the conclusion of (ii).

For the other conics, the answer to the first question is more complicated. If the conic Γ is
not a circle, then there are always at most four normals to the conic from a given point p, but the
exact number of normals varies in each case and depends upon the position of p. In one of the
exercises for this unit, this question is studied when Γ is the standard parabola y = x2 and p lies
on the y-axis; for some choices of p there are three normals to the parabola, but for others there is
only one. Here are some additional references:

http://mathworld.wolfram.com/ParabolaEvolute.html

http://mathworld.wolfram.com/EllipseEvolute.html

http://mathworld.wolfram.com/HyperbolaEvolute.html

http://www3.villanova.edu/maple/misc/ellipse/Apollonius2004.pdf

Finally, we address the question of whether a single line can be a normal line to several different
points on a conic which is not a circle. The next result implies that a line can be a normal to at
most two points of a conic.

PROPOSITION. Let Γ be a nonsingular conic, and let L be a line. Then L and Γ have at most

two points in common.

As in other cases, it suffices to verify this result when Γ is one of the standard examples. If L
is given by the algebraic equation px + qy = k where (p, q) 6= (0, 0) this amounts to showing that
for each of the quadratic equations in two variables defining the standard examples

y = ax2, b2x2 + a2y2 = a2b2 , b2x2 − a2y2 = a2b2

there are at most two simultaneous solutions of the system determined by the quadratic equation
and the equation of the line. We can solve px + qy = k for x in terms of y or vice versa; it will be
convenient to call the solved-for variable the constrained variable and the other variable the free

variable. Substitution of for the constrained variable in terms of the free variable yields a quadratic
equation in the free variable, which has at most two solutions. For each of these solutions there is a
unique corresponding value of the constrained variable, and thus there are at most two simultaneous
solutions for the given system(s) of equations.

Here is the result on lines which are normal at two points of a conic.
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PROPOSITION. Let Γ be a conic which is not a circle, and let L be a line. Then L is a normal

line to Γ at two distinct points if and only if Γ is an ellipse or hyperbola and L is one of its axes.

In particular, there are two such lines for an ellipse (which is not a circle) and one for a
hyperbola, but none for a parabola.

Proof. The argument breaks down into cases depending upon whether Γ, is an ellipse, a hperbola,
or a parabola. In each case we shall look for conditions under which two points on the curve have
the same normal direction (up to sign as usual), and in each case where this happens we shall show
that the normal lines at the two points must be different.

The case of a parabola. The curve’s equation is y = ax2 where a > 0. We shall show
that no two points on the curve have the same normal direction. The tangent vector at a typical
point (t, at2) has the form (1, 2at), so the normal direction at that point is given by (2at,−1). If
(s, as2) is a second point on the curve (so s 6= t), then (t, at2) and (s, as2) will have the same
normal direction if and only if (2at,−1) and (2as,−1) are nonzero scalar multiples of each other.
If c is a scalar such that the first vector is c times the second, then we have (2at,−1) = (2cas,−c)
and by equating coefficients we get c = 1. But this means that 2as = 2at, which implies s = t,
contradicting our choice of s 6= t. Therefore different points on the parabola have different normal
directions, so no line can be normal to the parabola at two distinct points.

The case of an ellipse. The curve is given in parametric form by (a cos t, b sin t) where
a, b > 0 and a 6= b since we are excluding the case of a circle. In this case the normal direction
is determined by (b cos t, a sin t). If t is an integral multiple of 1

2
π, then the normal line is one of

the coordinate axes, so that the point is a vertex of the ellipse and the normal goes through the
opposite vertex, so we knows what happens in such cases and henceforth we shall only consider
cases where t is not an integral multiple of 1

2
π. This implies that both cos t and sin t are nonzero.

If u is a now point such that (b cos u, a sinu) = c(b cos t, a sin t) for some nonzero scalar k, then
it follows that cos u = k cos t and sinu = k sin t; using the identity sin2 +cos2 = 1 we can conclude
that 1 = k2, so that the only nontrivial possibility is k = −1, and in fact this is realized when
u = t + π. To conclude the proof in this case, it is enough to show that the normal line to the
ellipse at (a cos u, b sinu) = (−a cos t,−b sin t). If it did, then there would be a scalar s such that

(a cos t, b sin t) + s · (b cos t, a sin t) = (−a cos t,−b sin t)

so that a + sb = −a and b + sa = −b; in deriving the last two equations we use the fact that both
sin t and cos t are nonzero. If we solve the pair of equations we obtain

s = −
2a

b
= −

2b

a

and if we multiply both sides of the last equation by −ab/2 we find that a2 = b2. Since we
specifically assumed that a2 6= b2, this means that there is no value of s which solves the equation

(a cos t, b sin t) + s · (b cos t, a sin t) = (−a cos t,−b sin t)

and therefore the normal lines to the curve at parameter values t and t + π have no points in
common. Therefore, if a normal line to an ellipse is not an axis, then it is not normal to the ellipse
at any other point on the curve.

The case of a hyperbola. This is similar to the preceding case, but now the curve’s two
branches are given in parametric form by (εa cosh t, b sinh t) where a, b > 0 and ε = ± 1. In this case
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the direction of the normal line is determined by (εb cosh t,−a sinh t), and once again the question
is to see if there is a second point at which the normal direction is the same; we shall write this
point as (ηb cosh u,−a sinhu), where η = ± 1 does not depend upon ε. If k is the proportionality
constant, then as before we must have

ε cosh t = kη coshu , sinh t = k sinhu .

As in the elliptical case, it is useful to dispose of cases where the points lie on the x-axis (note that
no points lie on the y-axis). We know that the x-axis meets the hyperbola normally at the two
vertex points (±a, 0), so this case is understood. Therefore we shall assume that sinh t > 0 for the
rest of the discussion; since cosh2 − sinh2 = 1 and cosh ≥ 1, this also yields cosh t > 1.

Also as in the elliptical case, given a point (εa cosh t, b sinh t) with t 6= 0, it follows that the
same normal direction arises for a second point on the hyperbola of the form

(−εa cosh−t, b sinh−t) = −(εa cosh t, b sinh t)

since cosh t is even and sinh t is odd; note that this point lies on the other branch of the hyperbola.
We would like to imitate the preceding argument and show that (i) the same normal direction does
not arise for any other point on either branch of the hyperbola, (ii) the normal to the hyperbola
at (εa cosh t, b sinh t) does not contain the point −(εa cosh t, b sinh t).

The sign factors ε and η introduce complications not present in the elliptical case, but we can
reduce everything to the case where ε = 1 because the hyperbola is symmetric with respect to the
isometry (reflection about the y-axis) sending (x, y) to (−x, y). Thus we shall also assume that
ε = +1 for the remainder of this argument.

To dispose of (i), we need to show that if k, η and u are such that

(b cosh t,−a sinh t) = (kηb cosh u,−ka sinhu)

then k = ±1, u = kt and η = k. Set p = cosh t and q = sinh t, so that p > 1 and q > 0, with
p2 = 1 + q2. Since a and b are positive, equating the coefficients on both sides of the displayed
equation yields p = kη cosh u and q = k sinhu, so that

p2 = k2 cosh2 u = k2 + k2 sinh2 u = k2 + q2

and if we subtract p2 = 1 + q2 from this we get k2 − 1 = 0, or k = ±1. Since sinhku = k sinhu
for k = ±1 and sinh is strictly increasing, if k = −1 then the coordinate equation −a sinh t =
−ka sinhu = −a sinh−u implies that u = −t (recall that we have reduced things to cases where
sinh t, sinhu 6= 0), and b cosh t = kηb cosh−t = kηb cosh t = −ηb cosh t implies η = −1 = k
(since cosh t, coshu > 1). — Now suppose that k = 1. Then the coordinate equations yield
−a sinh t = −a sinhu, so that t = u, and b cosh t = ηb cosh t, so that η = 1 = k. This completes the
verification of (i).

The normal line at (a cosh t, b sinh t) is given by the parametric form

(a cosh t, b sinh t) + s · (b cosh t,−a sinh t)

and the verification of (ii) amounts to saying there is no choice of s for which this expression equals
(−a cosh t,−b sinh t). This argument is parallel to the elliptical case. If we can find a scalar s so
that

(a cosh t, b sinh t) + s · (b cosh t,−a sinh t) = (−a cosh t,−b sinh t)
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so that a + sb = −a and b − sa = −b; in deriving the last two equations we use the fact that both
sinh t and cosh t are nonzero. If we solve the pair of equations we obtain

s = −
2a

b
=

2b

a

and if we multiply both sides of the last equation by −ab/2 we find that a2 = −b2. Since a, b > 0
this is impossible, and hence there is no value of s which solves the equation

(a cosh t, b sinh t) + s · (b cosh t,−a sinh t) = (−a cosh t,−b sinh t)

and therefore the normal to the hyperbola at the point (εa cosh t, b sinh t) does not contain the
point −(εa cosh t, b sinh t). To sum up the entire discussion for hyperbolas, if a normal line to a
hyperbola is not an axis, then it is not normal to the hyperbola at any other point on the curve.

Addendum: Intersections of two conics

In history04Y.pdf we mentioned that two conics have at most four points in common. For
a given pair of examples, it is usually fairly straightforward to do this using standard algebraic
techniques from precalculus and earlier courses, but for the sake of completeness we note that a
very abstract and general result of this type appears in Exercise 11 on pages 175–175 (= document
pages 33–34) of the following online document:

http://math.ucr.edu/∼res/progeom/pgnotes07.pdf
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