
 

 

6.  Mathematics of Asian and Arabic civilizations  —  I 
 

 
(Burton,  5.3, 5.5, 6.1) 

 
 
Every civilization needs to develop some mathematical knowledge in order to succeed, 
and several other ancient civilizations went quite far in producing substantial amounts of 
mathematics.  Not surprisingly, many fundamental mathematical ideas were discovered 
independently in each of these civilizations, but there were also noteworthy differences 
in the organization and emphasis of the subject, and in many cases one civilization 
discovered things which others did not.   We shall begin this unit with brief discussions 
of mathematics in the civilizations of China and India.  As indicated at the beginning of 
this course, we shall not try to do this comprehensively, but instead we shall try to focus 
on relatively unique features of mathematics in these civilizations and on advances 
which influenced the development of the mathematics we have in our contemporary 
civilization. We shall pay particular attention to the contributions of Indian civilization in 
these notes because the work of Indian mathematicians has had a particularly strong 
impact on mathematics as we know it today.   

 
Mathematical activity in China 

 
It seems clear that significant Chinese work in mathematics goes back at least 3000 
years and probably at least a millennium longer, but our knowledge prior to about 100 
B.C.E. is sketchy and often quite speculative.  However, by that time the Chinese 
mathematics was already quite well developed.  The level of Chinese mathematical 
knowledge and ability at the time can be seen from the contents of The Nine Chapters 
on the Mathematical Art, which was apparently written in the 1st century B.C.E. and 
was extremely influential (with major commentaries by Liu Hui, 220 – 280, and others).   
The MacTutor site contains a brief but very informative survey of this work’s contents: 

 

http://www-history.mcs.st-and.ac.uk/HistTopics/Nine_chapters.html 
 

One important difference between Chinese and Greek mathematics involved the role of 
logic.  Chinese mathematics did not use deductive logic as the framework for the 
subject, and the interest was more directed towards solving wide ranges of problems 
and obtaining numerically accurate solutions than to studying the subject for its own 
sake or describing solutions qualitatively.   The Chinese algorithm for extracting square 
roots, which was widely taught in American schools during the first few decades of the 
20th century, illustrates these features of Chinese mathematics.  Here are online 
references for the algorithm and its justification: 

 

http://www.homeschoolmath.net/teaching/square-root-algorithm.php 
 

http://www.homeschoolmath.net/teaching/sqr-algorithm-why-works.php 
 

However, there was also interest in some topics which were not intrinsically practical.  
For example, the Chinese were fond of patterns, and at some very early point they 
discovered the existence of magic squares, which are square matrices of positive 
integers such that the sums of the rows, columns and diagonals are all equal to some 
fixed value.  Further discussions of this topic are in the following two online files:   



 

 

 
 

http://math.ucr.edu/~res/math153-2019/oldmagicsquare.pdf   
 

http://math.ucr.edu/~res/math153-2019/oldmagicsquare2.pdf  
    

Early Chinese mathematics also included (1) relatively advanced methods for 
approximate numerical solutions (versions of Horner’s method, named after W. G. 
Horner, 1786 – 1837; see http://mathworld.wolfram.com/HornersMethod.html),  (2) 
systematic procedures for solving systems of linear equations,  and (3) the following 
basic class of problems involving a result known as the Chinese Remainder Theorem: 

 

Let p and q be two relatively prime positive integers, and suppose that long division of a 

third positive integer n by p and q yields remainders of a and b respectively.  What 

value(s) must n take? 
 

For example, if p  =  3 and q  =  5, and the remainders are 2 and 3 respectively, then n 

must have the form 8  + 15m for some integer m.   The first known examples of such 
problems appeared in a highly influential mathematical manual written by Sun Zi (also 

called Sun Tzu, 400 – 460; distinct from the military strategist Sun Tzu, 544 B.C.E. – 
496 B.C.E.).  The two files  http://math.ucr.edu/~res/math153-2019/history06c.pdf  and  
http://math.ucr.edu/~res/math153-2019/chinese_remainder.pdf   discuss problems of this 
sort and present methods for solving them. 

 

Before moving ahead, we shall give another reference for Horner’s method; namely, 
pages 174 – 177 from the following older college algebra textbook: 
 

A. A. Albert. College Algebra (Reprint of the 1946 Edition).  
University of Chicago Press, Chicago, IL, 1963.  

 

The peak period of Chinese mathematics took place during the 13th century and early 
14th century.  One of the most prominent figures of the time was Qin Jushao (1202 – 
1261), whose  Mathematical Treatise in Nine Sections  covers many of the topics 
discussed before at more sophisticated levels, including polynomial equations with 
degrees up to  10  and some equations of Diophantine type which went further than the 
problems which Diophantus is known to have considered.  Solutions to complicated 
systems of equations also figured in the research of contemporaries including Li Zhi 

(also called Li Yeh, 1192  – 1279), Yang Hui (c. 1238  –  c.1298) and Zhu Shijie (1260 

– 1320).  Yang Hui also wrote extensively on magic squares and mathematical 
education. 
 

Chinese mathematical activity declined after the peak period, but it never really ended; 
elements of Chinese mathematical tradition continued after the infusion of Western 

mathematical knowledge beginning with the missionary work of M. Ricci (1552 – 1610). 
 

Finally, we note that the online site  http://aleph0.clarku.edu/~djoyce/mathhist/china.html 

contains a somewhat more detailed overview of Chinese mathematical history. 
 

 
Mathematical activity in India 

 
Indian mathematics has a long and interesting history, probably going back at least 
4000 years with a sequence of three distinct eras during the ancient period (the  
Harappan  or  Indus Valley era  until about 1500 B.C.E., the  Vedic era  from about 
1500 B.C.E. until about 500 B.C.E., and the  Jaina era  from about 500 B.C.E. until 



 

 

about 500 A.D.).  Although there may have been some mathematical interactions 
between Indian mathematics and Greek or Chinese mathematics, the Indian approach 
to the subject also contained concepts and ideas that were not well developed by either 
of the other civilizations.  In keeping with the focus of this course, we shall begin our 
discussion of Indian mathematics with comments on its distinctive features and its 
advances which ultimately had a major impact on modern mathematics.   
 

Logical structure played a more significant role in Indian mathematics than in Chinese 
mathematics, but it was definitely not comparable to the place of logic in Greek 
mathematics.  Another noteworthy difference between Indian and Greek mathematics is 
that Indian mathematicians were less troubled by distinctions between rational and 
irrational numbers, and in fact they were far more willing to consider still other concepts 
including negative numbers, zero, and even infinite objects in some cases.   Ancient 
Indian mathematics is also distinguished by its extensive use of poetic language in its 
mathematical writings; one apparent reason for this was relative ease of memorization.   
In a similar vein, the mathematical problems in Indian mathematical writings often were 
placed into highly imaginative settings. 
 

Although studies of grammatical structure have only recently become linked to the 
mathematical sciences, linguists like N. Chomsky (1928 – , now more widely known for 
his controversial political views), computer scientists like J. Backus (the developer of 
FORTRAN, 1924 – 2007) and many others have forcefully demonstrated the 
connection between the two subjects and their importance for each other.  In view of 

this, the extensive work of Pāṇini (c. 520  – c. 460 B.C.E.) on Sanskrit grammar 
definitely deserves to be included as a contribution to mathematics as we know it today; 
his studies strongly anticipated much of the 20th century work on the grammatical 
structures that is fundamentally important for operating computers (and one important 
concept is known as the Panini – Backus normal form).   Somewhat later writings of 

Pingala (probably between 400 and 100 B.C.E.) on prosody (PROSS – o – dee =  the 
rhythm, stress, and intonation of language, usually in its spoken form) contains the first 
known description of a binary numeral system.  The study of language patterns led to 
substantial work on combinatorial (counting) problems, and in several respects 
Pingala’s results appear to have anticipated important later developments. 
 

Probably the best known, and most widely used, legacy of Indian mathematics is the 

base 10 place value numeration system in use today, with nine basic digits arranged in 
sequences and the roles of the digits determined by their placement.   With the ultimate 
incorporation of zero into the framework, the nine digit system grew to the ten digit 
notation that has become standard worldwide.  The impact of this discovery is stated 

clearly and concisely in the following quotation from P. – S. Laplace (1749 – 1847): 
 

The ingenious method of expressing every possible number using a set of ten 
symbols (each symbol having a place value and an absolute value) emerged in 
India. The idea seems so simple nowadays that its significance and profound 
importance is no longer appreciated.  Its simplicity lies in the way it facilitated 
calculation and placed arithmetic foremost amongst useful inventions.  The 
importance of this invention is more readily appreciated when one considers that 
it was beyond the two greatest men of Antiquity, Archimedes and Apollonius. 

 

Some comparisons with numeration in other civilizations may be enlightening.  The 

Babylonians actually had a base 60 place value numeration system, but the Greek 
numeration system did not; in fact, it was more similar in structure to Roman numerals, 
where a number like 234 was written using a special symbol combination for 60 (CC), 



 

 

another special symbol combination for 30 (XXX), and yet another special symbol 

combination for 4 (IV).  However, the Greek conventions only involved single symbols 
for the hunrdeds, tens and units terms, using their alphabet at the time for the symbols.  
A chart giving the symbols for the various numbers is on the next page.  Three symbols 
correspond to letters which are no longer used in the language; namely,  ϝϝϝϝ (vau or 

digamma) or  ϛ ϛ ϛ ϛ     (stigma)  for 6,  ϟϟϟϟ  or  ϙϙϙϙ  (qoppa) for  90,  and  ϡ   (sampi)  for  900. 

 

|Letter| |Value| |Letter| |Value| |Letter| |Value| 
|α| |1| |ι| |10| |ρ| |100| 

|β| |2| |κ| |20| |σ| |200| 

|γ| |3| |λ| |30| |τ| |300| 

|δ| |4| |µ| |40| |υ| |400| 

|ε| |5| |ν| |50| |φ| |500| 

|ϝ| or |ϛ| |6| |ξ| |60| |χ| |600| 

ζ| |7| |ο| |70| |ψ| |700| 

η| |8| |π| |80| |ω| |800| 

θ| |9| |ϟ  or  ϙϙϙϙ| |90| |ϡ| |900| 
 

(Source:  http://en.wikipedia.org/wiki/Greek_numerals) 
 

For example, the traditional representation of the celebrated number  666  in Greek 

versions of the New Testament was  χ ξ ϛϛϛϛ’ ; four digit numbers were formed by using the 

symbols for units in the thousands place with a special accent sign  —  to illustrate this, 

we note that the number  2012  would have been written as  ‚ β ι β ’. 
 

Historians have varying opinions on exactly when the Indian place value system was 
developed ranging from the 1st to 5th century  A.D., with some evidence pointing to the 
2nd or 3rd century A.D., but ancient Indian mathematics has very little to say about 
exactly when discoveries were made or who made them.  There is a manuscript 
(Lokavibhâga, or Parts of the Universe) that is known to have been written no later than 
458 A.D. and explicitly discusses a place value system including zero, and an analysis 
of the text indicates the underlying ideas had been known for some time (see Chapter 

24, and especially pages 420 – 421, of the book by Ifrah cited in Unit 1).  However, it 
took several centuries before this system was widely used (this is also discussed in the 
book by Ifrah). 
 

The idea of using nine or ten digits also appears explicitly as a well – known technique 

in the writings of Āryabhaṭa the Elder (476 – 550; the first Indian satellite, launched in 
1975, was named after him) and he is viewed as the earliest mathematical contributor 
to the  classical era  of Indian mathematics from about 500 to 1200 A.D., so we shall 
begin with his work.  The surviving mathematical work of Aryabhata is contained in a 

manuscript called the Āryabhaṭ īya, which is written entirely in verse and also covers 
other subjects besides mathematics.  As noted before, there is a reference describing a 
numbering system like the one we use today, and the mathematical portion of the work 
also contains results on integral solutions to Diophantine equations of the first and 
second degree.  Trigonometry also played a very significant role in Indian mathematics, 

and in fact modern trigonometry follows the Indian approach — which is based upon 

the  sine  function — rather than the Greek approach based upon the chord function.  
The trigonometric tables in the Aryabhatiya  compute trigonometric functions for angles 



 

 

with a basic increment of 3.75 degrees (=  
1
/24  of a right angle).  

 

One of the most important figures in Indian mathematics was Brahmagupta (598 – 

670), whose writings (most notably the  Brāhmasphuṭ asiddhānta) contain many 

important new and far – reaching ideas.  We shall list a few of them: 
 

1. He explicitly recognized that Diophantine equations can have many 
solutions. 

 

2. He used nine or ten symbols to write numbers (Aryabhata used an older 
alphabetic system). 

 

3. He had no reservations about working with negative numbers and 
irrationals. 

 

4. His work recognizes the concept of zero, although the first known 
explicit use of a symbol for zero in written Indian mathematics does not 
occur until late in the 9th century. 

 

5. He devoted a great deal of effort to analyzing Diophantine equations 

like the previously discussed Pell equation   x 

2
   =   1 + a y 

2
.  Further 

results on this equation due to Bhāskara (1114 – 1185) are mentioned 
below; Brahmagupta’s main contribution was to give a method for 
constructing new solutions out of previously known ones (a method for 
doing so is given in  http://math.ucr.edu/~res/math1532019/history06b.pdf ). 

 

Brahmagupta’s writings also treat geometrical topics, but some of his conclusions are 
extremely inaccurate and far below the quality of his algebraic results.  However, one 
particularly noteworthy geometric result due to him is an area formula for a quadrilateral 
that can be inscribed in a circle (see Exercise 6 on page 193 of Burton).    Further 
information on proofs for this result may be found at the following online sites: 

 

http://jwilson.coe.uga.edu/emt725/brahmagupta/brahmagupta.html 
 

http://en.wikipedia.org/wiki/Brahmagupta's_formula 
 

The work of Mahāvīra (or Mahaviracharya,  c. 800 – c. 870) clarified and extended the 
ideas of Aryabhata and Brahmagupta, and his only surviving work (Ganit Saar 
Sangraha) is the earliest known Indian text devoted entirely to mathematics.  Like other 
mathematicians from the classical era, he discussed arithmetic operations involving 
zero, and like the others he found the concept of division by zero to be troublesome.  
Brahmagupta had tried to explain division by zero, but he did not get very far and 

mistakenly asserted that the indeterminate form  0/0 should equal 0.  Mahavira 
mistakenly suggested that division by zero had no effect on the number being divided.   
More than two centuries would pass until Bhāskara, the next epic figure in the history of 
Indian mathematics, suggested that “if one divides a finite nonzero number by zero, the 
result is infinity,” which is now viewed as one of the best possible intuitive descriptions 
(however, this statement can lead to paradoxes and fallacious proofs if it is not  used 
carefully).  For the sake of completeness, here are some mathematically accurate 
online references concerning division by zero:  

 

http://mathworld.wolfram.com/DivisionbyZero.html 
 

http://mathworld.wolfram.com/AffinelyExtendedRealNumbers.html 
 

http://mathworld.wolfram.com/ProjectivelyExtendedRealNumbers.html 
 



 

 

http://en.wikipedia.org/wiki/Extended_real_number_line 
 

http://en.wikipedia.org/wiki/Projectively_extended_real_numbers 
 

We turn now to Bhāskara (also known as Bhaskara I I  or  Bhaskarachariya), who is 
often viewed as the most important figure in classical Indian mathematics.  His main 
work, Siddhānta Shiromani, consists four parts (Lilāvati, Bijaganita, Grahaganita and 
Golādhyāya) which deal with arithmetic, algebra, astronomy and spheres. 
 

The concept of zero is far more explicit in Bhaskara’s work than in earlier writings, and 
as noted above he made a crucial advance in our efforts to understand the issues 
involving division by zero.  Also, he clearly understood that quadratic equations have 

two roots; one verbal problem in his writings yields the equation   x 

2
  =  64(x – 12), 

and he notes that  16  and  48  are both valid solutions.  His mathematical writings also 
used the decimal system methodically to an unprecedented degree. 
 

Some of Bhaskara’s deepest discoveries involve Pell’s equation  p x 

2
 + 1  =  y 

2
.  His 

numerical results on this equation include the following:   For  p   =   61  there is a 

solution  x   =   226153980,  y   =  1776319049, and for  p   =   67  there is a 

solution x  =   5967,  y   =   48842.  More generally, Bhaskara developed a very 
elegant algorithmic “cyclic method” for finding a minimal solution to Pell’s equation 

when  p  has no square divisors except  1;  descriptions of this method appear on 
pages 223 – 225 of the textbook by Katz and pages 10 – 11 of the following online 
document:   
 

http://www.math.ucla.edu/~vsv/gamelin.pdf 
 

Although Bhaskara’s method is relatively simple and efficient, a proof that it always 
works was not given until 1929 in the following paper:   

 

K. A. A. Ayyangar, New light on Bhaskara’s Chakravala or cyclic method of 
solving indeterminate equations of the second degree in two variables.  
Journal of the Indian Mathematics Society 18 (1929), 232 – 245. 

 

The following paper contains still further information: 
 

C. – O.  Selenius.  Rationale of the chakravāla process of Jayadeva and 
Bhāskara I I . Historia Mathematica 2 (1975), 167 – 184. 

 

Bhaskara also made noteworthy contributions in other areas.  For example, in his work 
on astronomy he broke new ground in studying trigonometry for its own sake rather 
than for its computational value, and he had many insights which were rudimentary 
versions of key facts in differential and integral calculus.   
 

The classical period in Indian mathematics basically ended with Bhaskara;  invasions 
by Islamic armies from Afghanistan during the late 12th and early 13th centuries 
dramatically changed the course of Indian history, especially outside the south of the 
subcontinent (for example, see  http://www.infoplease.com/ce6/history/A0815061.html).  
However, some important mathematical activity continued in the south, most notably in 
Kerala at the tip of the peninsula (see  http://math.ucr.edu/~res/math153-2019/map-India.pdf).  
The Kerala School of mathematics built upon the work of Bhaskara on astronomy and 
trigonometry, and the most renowned achievements were strong results on infinite 
series related to trigonometric functions.   For example, Madhava of Sangamagrama 

(1340 – 1425) discovered the standard infinite series for  arctan x, and subsequently 

Nilakantha Somayaji (1444 – 1544) found an infinite series for    ππππ/4        =  arctan 1 that 



 

 

converges much more rapidly than the standard series for arctan 1 (more details and 

some references are given in the next unit).   In many respects the results of the Kerala 
school foreshadowed the development of calculus (although many key ingredients in 
calculus were missing and claims that their discoveries were transmitted to the Western 
world around 1600 are not supported by direct evidence; however, it is conceivable that 
Western missionaries or merchants might have passed along information about the 
findings of the Kerala school).   Aside from the Kerala School’s results on infinite series 
and trigonometric functions, an early version of the Mean Value Theorem in differential 
calculus was obtained by Parameshvara (1370–1460).    
 

The original discoveries of the Kerala school appear to have dried up in the early years 
of the 17th century, but the school itself survived for about another two centuries, with 
the final activity just a few decades before the British established their rule over the 
entire subcontinent during the middle of the 19th century.  Shortly afterwards, Western 
mathematics began to exert a strong influence on the Indian subcontinent.  However, 
mathematics in India retained some traditional features at least for a while, and some 
historians have cited the extraordinary mathematical studies of  S. A. Rāmānujan (1887 
– 1920) as an example of this phenomenon.   More information about this unique 
mathematician and his work can be found in the following online references: 

 

http://en.wikipedia.org/wiki/Srinivasa_Ramanujan 
 

http://www.usna.edu/Users/math/meh/ramanujan.html 
 

http://scienceworld.wolfram.com/biography/Ramanujan.html 

 
Since the most far – reaching consequences for modern mathematics were transmitted 

to the Western World indirectly through Arabic/Islamic civilization, we shall move on to 
the latter after a few final remarks in this half of the unit. 

  
Remarks on other non – Western cultures 

 
We shall limit this discussion to a few unique and particularly striking achievements. 
 

Given that it took many civilizations a long time to recognize the concept of zero and to 
use it in their numbering systems, it is remarkable that zero was included in Mayan and 
pre – Mayan numeration systems more than 2000 years ago.  The Mayans had a very 
complicated and well – developed calendar which used the zero concept, and some 
objects have Mayan calendar dates corresponding to approximately 30 B.C.E. .  A chart 
depicting their base 20 number system is given below. 
 

 
 

(Source: http://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Maya.svg/220px-Maya.svg.png) 



 

 

 

Some features of Japanese mathematics also deserve to be mentioned.   Near the 
beginning of the 17th century, a sophisticated and highly original school of mathematics 

developed while the country was largely isolated from the outside world (1633 – 1868).  
This work was largely based upon Chinese mathematics, but it went far beyond the 
latter in some respects and had its own style.  One of the most celebrated 

mathematicians of this school was Takakazu (or Kōwa) Seki (1642 – 1708).  He did a 
considerable amount of work on infinitesimal calculus and Diophantine equations, and 
he also made important discoveries related to matrix algebra (more precisely, the 
theory of determinants).  Seki was a contemporary of Gottfried Leibniz and Isaac 
Newton, but his work was entirely independent.   Important aspects of Seki’s work were 

disseminated and carried further by Takebe Katahiro (1664 – 1739), also known as 

Takebe Kenkō; other prominent names in this school include Naonobu Ajima (1732 – 

1798), also known as Ajima Chokuyen, and Wada Yenzō Nei (1787 – 1840).   With the 
opening of Japan to the outside world in the middle of the 19th century, the influence of 
Western mathematics led to the rapid decline and assimilation of the Japanese school.   
The following book is (still) an excellent source of information about this aspect of 
mathematical history: 
 

D. E. Smith and Y. Mikami. A History of Japanese Mathematics 
(Reprint of the 1914 edition). Dover Publications, New York, 2004.  

  
Some additional references 

 
Here are two further references on Asian mathematics from non – Western viewpoints, 
one of which is a history of Chinese mathematics and another of which studies possible 
Indian influences in the development of calculus by European mathematicians. 

 

Yăn Lĭ and Shíràn Dů. Chinese mathematics: a concise history (Translated 

by J. N. Crossley and A. W. – C. Lun, with a foreword by J. Needham).  Oxford 
University Press, New York NY, 1987.   

 

There is an informative review of this book and another on the same topic (Martzloff, 
History of Chinese Mathematics, with an English translation by S. S. Wilson that was 

published by Springer – Verlag in 1997).  It was written by K. Chemla and appeared in  

The British Journal for the History of Science 23 (1990), pp. 493 – 495. 
 

George Gheverghese Joseph. The Crest of the Peacock: Non – European 
Roots of Mathematics (Third Edition).  Princeton University Press, Princeton, 
NJ, 2011.   
 

This is a very interesting, engaging and controversial book whose strongly stated thesis 

is that the mathematical activities of non – Western cultures have been unfairly 
dismissed or discounted to a great extent.   In particular, Chapter 10 contains a detailed 
discussion of the possibility that the work of mathematicians from the Kerala School in 
India was known to European mathematicians who developed calculus and its 
forerunners in the 18th century (the circumstantial evidence has been mentioned, and 
the book develops this argument further).   Some thoughtful criticisms of the book 
appear in a few of the following amazon.com reviews: 
 

http://www.amazon.com/product-reviews/0691006598/ref=cm_cr_dp_syn_footer/277-5801994-
5953420?k=The%20Crest%20of%20the%20Peacock%3A%20The%20Non-

European%20Roots%20of%20Mathematics&showViewpoints=1 



 

 

 

 
Addenda to this unit 

 
There are five separate items.  The first document (6.A) discusses the contributions of 
Arabic mathematics and some highly critical comments on this topic that have been 
published recently, the second (6.B) describes a method for propagating one solution of 
Pell’s equation into an infinite family of solutions, the third (6.C) presents general 
techniques for solving examples associated to the Chinese Remainder Theorem, the 
fourth (6.D) contains remarks on the sometimes confusing fact that the product of two 
negative numbers is positive,  and the last (6.E) discusses a generalization of the 
Pythagorean Theorem which was formulated by the Arabic mathematician Thabit ibn 
Qurra.   
 

 


