
7.B. Perfect squares in an arithmetic progression

Although Fibonacci is best known for his writings on base 10 numeration system and his
discussion of the sequence which is now named after him (but were previously known to others),
in many respects his most substantial contributions to mathematics are contained in hisLiber

quadratorum. This book represented the most significant advance in number theory by a Western
mathematician since the work of Diophantus about 1000 years earlier, and it would be another 300
years before any comparable breakthroughs took place. Well-written modern derivations for most
of the book’s results appear in the following article:

R. B. McClendon. Leonardo of Pisa and His Liber quadratorum. American Mathemat-
ical Monthly 26 (1919), 1–8.

However, Fibonacci’s deepest and most difficult result — namely, a description of three term
arithmetic progressions consisting of perfect squares a2 < b2 < c2 — is only discussed briefly in
this paper (there is a partial discussion on pages 280–281 of Burton, and also implicitly in Exercise
5 on page 285). In fact, finding a proof in standard books is elusive, partly because the proof is
fairly long and complex, and it requires ideas that one might not initially anticipate. Since a proof
of Fibonacci’s result is not all that easy to find in standard references and some of the statements
are somewhat imprecise, we shall state and prove a strong version of his result here. The discussion
will be based upon material from the following annotated translation of Fibonacci’s book:

Leonardo Pisano (Fibonacci). The Book of Squares (An [Extensively] Annotated
Translation into Modern English by L. E. Sigler). Academic Press, Boston, 1987.

There is also a brief historical discussion of the problem with further references on page 74 of this
book.

Statement of the main result

If we are given an arithmetic progression of the form {(ka)2, (kb)2, (kc)2} in which k, a, b, c
are positive integers and k > 1, then the reduced integer sequence {a2, b2, c2} is also an arithmetic
progression; conversely, if the second sequence is an arithmetic progression then so is the first.
Because of this, unless specifically stated otherwise we shall only consider arithmetic progressions
{a2, b2, c2} such that the positive integers a, b, c have no common positive factors except 1. In this
setting, we have the following strengthened form of Fibonacci’s result on squares in arithmetic
progressions:

THEOREM. (i) Let {a2, b2, c2} be an arithmetic progression of positive integers such that the

terms have no nontrivial common factors. Then there are relatively prime positive integers n > m
such that

a =
m2 + 2mn − n2

2
, b =

m2 + n2

2
, c =

n2 + 2mn − m2

2

if mn is odd and

a = m2 + 2mn − n2 , b = m2 + n2 , c = n2 + 2mn − m2

if mn is even.

(ii) Conversely, if m and n are relatively prime with n > m and m2 + 2mn− n2 > 0, then the

formulas in (i) define an arithmetic progression whose terms have no nontrivial common factors.
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It follows that the common difference between the terms in the arithmetic progression is equal
to nm(n2−m2) if mn is odd and 4mn(n2−m2) if mn is even. This has an immediate consequence:

COROLLARY. If {a2, b2, c2} is an arithmetic progression of positive integers, then the common

difference between adjacent terms is divisible by 24.

The arithmetic progression {1, 25, 49} = {12, 52, 72} shows that this is the strongest possible
divisibility property for such common differences.

Proof of the Corollary. (Compare the argument in history07.pdf). Suppose first that mn is
odd. Then m and n are both odd and since m2, n2 ≡ 1 mod 8 it follows that 8 divides n2 − m2.
Similarly, we know that m2 − n2 ≡ 1 mod 3 and hence we know that 24 divides n2 − m2.

Now suppose that mn is even. Then mn is even and therefore 4mn(n2 −m2) is divisible by 8.
Also, as before we know that m2 − n2 is divisible by 3, and therefore the entire common difference
is again divisible by 24.

Fibonacci’s approach

The basic idea is to view the difference of two squares u2−v2 as the sum of the u−v consecutive
odd numbers running from 2v + 1 to 2u − 1. Given an arithmetic progression of the usual form
{a2, b2, c2}, define the Fibonacci ratio of the 3-term progression to be the ratio

b − a

c − b

which is the ratio of the number of odd integers from 2b+1 to 2c−1 to the number of even integers
from 2a + 1 to 2b − 1. Since we have

c∑

i=b+1

2i − 1 = c2 − b2 = b2 − a2 =

b∑

i=a+1

2i − 1

and each term in the first summation is greater than each term in the second summation, it follows
that the the second summation must have more terms, so that b−a > c−b and hence the Fibonacci
ratio is strictly greater than 1.

The following upper bound on the Fibonacci ratio will be very useful:

UPPER BOUND LEMMA. Suppose we are given positive integers a < b < c such that

{a2, b2, c2} is an arithmetic progression with Fibonacci ratio r. Then r < 1 +
√

2.

Proof. Let q = c − b denote the ratio of the number of odd integers from 2b + 1 to 2c − 1, and
let p = b − a denote the number of even integers from 2a + 1 to 2b − 1, so that the Fibonacci ratio
r is equal to p/q and p = qr. Since {a2, b2, c2} is an arithmetic progression we have

b2 − (b − pr)2 = b2 − a2 = c2 − b2 = (b + q)2 − bq

and if we solve these equations for b we obtain the formula

b =
r2 + 1

2(r − 1)
· q .
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If we combine this with the equations a = b − qr and c = b + q, we also obtain the following
formulas:

c =
r2 + 2r − 1

2(r − 1)
· q , a =

1 + 2r − r2

2(r − 1)
· q

Since a is positive and r > 1, it follows that the numerator 1+2r−r2 must be positive; this condition
holds if and only if r lies between the two roots of the quadratic polynomial t2−2t−1 = 0. Now the
roots of this polynomial are given by 1±

√
2, and therefore 1+2r− r2 > 0 implies that r < 1+

√
2.

We can now state a modified version of Fibonacci’s main result:

THEOREM. Suppose that n and m are relatively prime positive integers such that n > m
but n < (1 +

√
2)m. Then there is an arithmetic progression {a2, b2, c2} such that a, b, c have no

nontrivial common factors, the Fibonacci ratio is equal to r, and the terms are given explicitly by

a =
m2 + 2mn − n2

2
, b =

m2 + n2

2
, c =

n2 + 2mn − m2

2

if mn is odd and

a = m2 + 2mn − n2 , b = m2 + n2 , c = n2 + 2mn − m2

if mn is even.

Sketch of proof. The motivation for the displayed formulas is explained in some detail
on pages 65–69 of The Book of Squares; observe that the condition n < (1 +

√
2)m implies that

m2+2mn−n2 is positive (if n = rm, then r > 1 and the given expression reduces to m2(1+2r−r2),
which is positive since r is less than 1 +

√
2).

It is an elementary but messy exercise to verify that b2 − a2 and c2 − b2 are both given by
nm(n2 − m2) if mn is odd and by 4mn(n2 − m2) if mn is even (in fact, the main steps are given
in the reference). Furthermore, if mn is odd then it follows that there are

b − a =
m2 + n2

2
− m2 + 2mn − n2

2
= n(n − m)

odd numbers starting with 2a + 1 and running through 2b − 1, and there are

c − b =
n2 + 2mn − m2

2
− m2 + n2

2
= m(n − m)

odd numbers starting with 2a+1 and running through 2b−1; similarly, if mn is even then it follows
that there are 2n(n−m) odd numbers starting with 2a + 1 and running through 2b− 1, and there
are 2m(n − m) odd numbers starting with 2a + 1 and running through 2b − 1. In either case the
Fibonacci ratio of the sequence is equal to n/m.

The only remaining thing to check is that a, b, c have no nontrivial common factors; we shall
prove this using the fact that n and m have no such factors. In any case, let d > 0 be the (positive)
greatest common divisor of a, b and c; then every integral linear combination of these numbers is
also divisible by d.

Suppose first that mn is odd. Then c − a = n2 − m2 and therefore we also have

2n2 = 2b + c − a , 2m2 = 2b + a − c .
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It follows immediately that the greatest common divisor d must also divide 2m2 and 2n2. On the
other hand, we also know that d divides b = 1

2
(m2 + n2), and this number is odd because m and n

are both odd (recall that the square of an odd integer leaves a remainder of 1 when divided by 4).
Therefore d must also be odd, and it follows that d must divide both m2 and n2. Since m and n
are relatively prime, it follows that d = 1.

Suppose now that mn is even. Then c − a = 2(n2 − m2) and therefore we also have

4n2 = 2b + c − a , 4m2 = 2b + a − c .

As before, it follows that the greatest common divisor d must also divide 4m2 and 4n2. On the
other hand, we also know that d divides b = n2 + m2, and this number is odd because one of m,n
is even and the other is odd. Therefore d must also be odd, and it follows that d must divide the
odd number in the pair {m2, n2}. Since d also divides n2 + m2, it follows that d must divide both
m2 and n2. Since m and n are relatively prime, it follows that d = 1.

Uniqueness

To conclude the proof of the main theorem, we need to show that if {x2, y2, z2} is an arbitrary
arithmetic progression whose terms have no nontrivial common factors, then it is given by the
Fibonacci construction described above.

THEOREM. If {a2, b2, c2} and {x2, y2, z2} are arithmetic progressions of positive integers whose

terms have no nontrivial common factors, and if the Fibonacci ratios of these three term sequences

are equal to the same number r > 1, then (a, b, c) = (x, y, z).

The Main Theorem follows from this result and Fibonacci’s construction. By the Upper Bound
Lemma and the conditions in the theorem, we know that the Fibonacci ratio satisfies r < 1 +

√
2.

Proof. Let q be the number of odd integers between 2b + 1 and 2c − 1, and let Q be the number
of odd integers between 2y + 1 and 2z − 1.

Then the numbers of odd integers between 2a + 1 and 2b − 1 is equal to rq, and the number
of odd integers between 2x + 1 and 2y − 1 is equal to rQ. Then as in the Upper Bound Lemma it
follows that

c = b + q , a = b − rq , z = y + Q , x = y − rQ

so that the arithmetic progression identities c2 − b2 = b2 − a2 and z2 − y2 = y2 − x2 yield the
following equations:

y =
(r2 + 1)Q

2(r − 1)
, b =

(r2 + 1)q

2(r − 1)

As in the proof of the Upper Bound Lemma, these in turn yield the following additional equations:

z =
(r2 + 2r − 1)Q

2(r − 1)
, c =

(r2 + 2r − 1)q

2(r − 1)
, x =

(1 + 2r − r2)Q

2(r − 1)
, a =

(1 + 2r − r2)q

2(r − 1)

Combining these equations, we obtain the following proportionality relations:

Q

q
=

x

a
=

y

b
=

z

c
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Express this common ratio in the form s/t where s and t are positive with no nontrivial common
factors. Then we have

sa = xt , sb = yt , sc = zt .

If p is a prime dividing s, then p does not divide one of x, y, z because these numbers have no
nontrivial common factors, and therefore it follows that p must divide t. Since we assumed that s
and t had no common factors, this leads to a contradiction unless s = 1. But now if t > 1, then
the equations imply that a, b, c have a nontrivial common factor, which is also false by hypothesis.
Therefore the only possibility is that t = 1 also holds, so that s = t and hence

Q

q
=

s

t
= 1

which immediately implies (a, b, c) = (x, y, z).

An alternate approach

There is a close relationship between arithmetic progressions of perfect squares are Pythagorean
triples that leads to a slightly different (but certainly equivalent) statement of the main results.
Our exposition will be independent of the preceding discussion, and we start with the following:

LEMMA. Let {a2, b2, c2} be an arithmetic progression of positive integers with a < b < c. Then

c − a and c + a are both even.

Proof. The condition c2 − b2 = b2 − a2 is equivalent to 2b2 = c2 − a2 = (c− a) · (c + a). It follows
that 2 divides either c − a or c + a. Since

c + a = (c − a) + 2 a

it follows that if one of {c − a, c + a} is even then so is the other.

The following identities describe the relation between arithmetic progressions of perfect squares
and Pythagorean triples.

THEOREM. There is a 1–1 correspondence between triples of positive integers a < b < c such

that c2 − b2 = b2 − a2 and Pythagorean triples x < y < z such that x2 + y2 = z2. It is given by

z = b, y = 1

2
(c + a), and x = 1

2
(c − a).

Before proceeding, we note that x and y are integers by the previous lemma.

COROLLARY. In the notation of the theorem, the common difference c2 − b2 = b2 − a2 is equal

to 2xy.

Sketch of proof of Corollary. It follows from the formulas that c = x + y and a = y − x,
therefore we have 2(b2 − a2) = c2 − a2 = 4xy which yields the formula in the statement of
the corollary.

Verification of the theorem is a straightforward and elementary exercise in algebra.

As in Burton, we say that a triple of positive integers is primitive if the integers have no
common (integral) factors other than ± 1. We then have the following refinement of the main
theorem.
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THEOREM. In the setting of the previous theorem, if {a, b, c} corresponds to {x, y, z}, then

{a, b, c} is primitive if and only if {x, y, z} is primitive.

Proof. First of all, we claim that c2 − b2 and b2 − a2 are both even by a refinement of the first
lemma. In that lemma we saw that c2 − a2 is the product of the even numbers (c + a) and (c− a),
and therefore 2b2 = c2 − a2 must be divisible by 4. But this means that

c2 − b2 = b2 − a2 = 1

2
(c2 − a2)

must be even.

Next, we claim that if {a, b, c} is primitive, then a, b and c are all odd. For if one were even,
then its square is also even, and by the preceding paragraph it follows that all three squares must
be even, and hence all three of the original integers must also be even. Since this contradicts the
primitivity condition, all three integers must be odd.

Suppose now that {a, b, c} is primitive, and let d > 0 be a common divisor of x, y, z. Then d
divides z = b, x + y = c and y − x = a. But this means that d must be equal to 1.

Suppose now that {x, y, z} is primitive, and let e > 0 be a common divisor of a, b, c. Then
e must be odd since a, b, c are all odd. By construction, we know that e must also divide z = b,
2y = a + c, and 2x = c − a. Since e is odd, it follows that e divides both y and x, and by the
primitivity of {x, y, z} it follows that e = 1.

COROLLARY. In the setting of the theorem, the common difference c2 − b2 = b2 − a2 is equal

to 2xy.

Proof of the Corollary. By construction we have xy = 1

4
(c2 − a2), and we know that the

right hand side is just 1

2
times the common difference c2 − b2 = b2 − a2. Therefore the common

difference is just 2xy. If we express this in terms of s and t, we find that the common difference
equals 4st(s2 − t2).

In fact, it follows that a number d is a common difference for a triple of perfect squares in
arithmetic progression if and only if it can be written as 4k2st(s2 − t2) where k is a positive integer
and s, t are relatively prime positive integers such that s > t and st is even.

NOW RECALL that the theorem on pages 295–296 of Burton states that all primitive
Pythagorean triples {x, y, z} are given by pairs of relatively prime integers s > t > 0 such that st
is even such that

{x, y} = {2st, s2 − t2} , z = s2 + t2 .

Our notation differs from Burton’s because he assumes that x is even while we assume that x < y.

Using these, we can express a, b, c and the common difference in terms of s and t. Specifically,
the common difference is 2xy = 4st(s2 − t2), and (as in the preceding discussion) we see that

a = |t2 + 2st − s2| , b = t2 + s2 , c = s2 + 2st − t2 .

Note that there is no upper bound on the ratio s/t (in contrast to the preceding discussion). Note
also that t2 +2st− s2 is positive if this ratio is less than 1+

√
2 and negative if this ratio is greater

than 1 +
√

2.

Uniqueness questions

We shall verify that different primitive pairs (s, t) as above will determine different primitive
Pythagorean triples {x, y, z} and different primitive arithemtic progressions {a, b, c}. By the first
theorem it suffices to prove this for Pythagorean triples.
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Suppose that (s, t) and (p, q) are ordered pairs of relatively prime positive integers such that
s > t, p > q and one integer in each pair is even (equivalently, both st and pq are even), and
suppose that both determine the same primitive Pythagorean triple {x, y, z}. Then by the theorem
on pages 295–296 of Burton we have z = s2 + t2 = p2 + q2 and

{x, y} = {2st, s2 − t2} = {2pq, p2 − q2} ;

as noted earlier, our notation differs from Burton’s because he assumes that x is even while we
assume that x < y, and there are some examples for which 2st < s2 − t2 and others for which
2st > s2 − t2 (see the chart on page 296 of Burton).

We claim that 2st = 2pq and s2 − t2 = p2 − q2. To see this, note first that both s2 − t2 and
p2 − q2 are odd because up to sign they are differences of an even integer and an odd integer (since
on of {s, t} is even and the other is odd, the same is true for their squares, and likewise for {p, q}).
Since both 2st and 2pq are even, the condition {2st, s2 − t2} = {2pq, p2 − q2} and the preceding
observation imply that 2st = 2pq and s2 − t2 = p2 − q2.

The conditions s2 + t2 = p2 + q2 and s2 − t2 = p2 − q2 imply that (s2, t2) = (p2, q2). Since all
integers in sight are positive it follows that (s, t) = (p, q).

Comparisons of the conclusions from the two approaches. The two approaches yield
slightly different descriptions of the primitive triples of positive integers a < b < c whose squares
form an arithmetic progression. In the modified Fibonacci approach these are described in terms
of ordered pairs of relatively prime positive integers (n,m) such that m < n < m(1 +

√
2), while in

the approach using Pythagorean triples the same objects are described in terms of ordered pairs of
positive integers (s, t) such that s > t and st is even. It is possible to describe this relationship in
greater detail, but we shall not do so.
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