
Magic squares uniqueness proof 
 

 

The goal is to show that there is only one 3 by 3 magic square with entries  1 

through  9,  up to rotation and reflection.    
 

By definition a 3 by 3 matrix is a magic square if the rows, columns and diagonals 

all add up to the same number.  The following general considerations are taken 

from the website 
 

http://home.earthlink.net/~morgenstern/magic/sq3.htm . 

 

Three-Term Formulation 
 
Suppose we have a 3x3 magic square. 

     E11 E12 E13 

     E21 E22 E23 

     E31 E32 E33 
 

Any 3x3 magic square can be expressed using the three terms, 
 

     a = (E23-E31), 

     b = (E21-E33), and 

     c = E22. 

 

Proof 
     E21+E22+E23 = E11+E21+E31 ==> E11 = E22+(E23-E31) = c+a. 

     E13+E23+E33 = E13+E22+E31 ==> E33 = E22-(E23-E31) = c-a. 

     E21+E22+E23 = E13+E23+E33 ==> E13 = E22+(E21-E33) = c+b. 

     E11+E21+E31 = E11+E22+E33 ==> E31 = E22-(E21-E33) = c-b. 

     E11+E12+E13 = 3E22 ==> (E22+a)+E12+(E22+b) = 3E22 ==> E12 

= c-(a+b). 

     E31+E32+E33 = 3E22 ==> (E22-b)+E32+(E22-a) = 3E22 ==> E32 

= c+(a+b). 

     E11+E21+E31 = 3E22 ==> (E22+a)+E21+(E22-b) = 3E22 ==> E21 

= c-(a-b). 

     E13+E23+E33 = 3E22 ==> (E22+b)+E23+(E22-a) = 3E22 ==> E23 

= c+(a-b). 

 

Substituting a,b,c for the E's: 

 



     c+a      c-(a+b)  c+b 

     c-(a-b)  c        c+(a-b) 

     c-b      c+(a+b)  c-a 
 

Any values for a,b,c make a 3x3 magic square. 

The sum of each row, column, and diagonal is 3c. 

 

Suppose now that we want the entries of the magic square to be  1, 2, 3, 4, 5, 6, 7, 

8, 9.  Then the sum of all the entries is  1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9  =  45.  

On the other hand, by the preceding paragraph the sum of the entries in each row is  

3c, so the sum of the entries in all the rows is  9c, which means that  c  =  5.    

 

The next question is where to put  1.  By the symmetry properties of the square 

there are essentially two possibilities:  Either  there is a  1  in one of the corner 

positions  or else  there is a  1  in one of the  (1, 2),  (2, 1),  (2, 3)  or  (3, 2)  entries.  

Suppose first that the  1  is in a corner position; then by symmetry we can put  1  in 

the lower right position.  Since the NW  to  SE diagonal must add up to  15, it 

follows that there must be a  9  in the upper left position.  In the general setting, we 

then have  c  =  5  and  a  =  4, so the remaining entries are given as follows: 
 

     9       4-b     5+b 

     4+b     5        9-b 

     5-b      6+b     1 
 

Now the first row is supposed to add up to 15, but clearly it adds up to 18.  This 

implies that we cannot have a magic square in which  9  and  1  are in opposite 

corners, and in particular  1  must appear in of the  (1, 2),  (2, 1),  (2, 3)  or  (3, 2)  

entries.  By symmetry we might as well assume that   1  appears in the  (1, 2)  

entry, and as before it follows that  3  must appear in the (1, 2) entry.  In the 

notation at the top of the page, this means that  a + b  =  4, which in turn implies 

that  a  =  4 – b  and  a – b  =  4 – 2b.  If we substitute these conclusions into the 

matrix at the top of the previous page, we see that the magic square must have the 

following form: 
 

     9-b      1       5+b 

     1+2b     5        9-2b 

     5-b      9       1+b 
 

Once again we know that the sum of the entries in the bottom row equals 15, and 

the only way this can happen if the entries are  1 – 9  is if one entry in the top row 



equals  2  and the other equals  4 (the sum of the entries in the third row is 15, so 

the sum of the left and right entries in the third row is  6;  these entries are unequal, 

and neither can be equal to  1  because we know that  1  appears elsewhere in the 

matrix).  Once again by symmetry we may as well assume that lower left entry is  

4  and the other is  2.   But these conditions imply that  b  =  1, and if we substitute 

this value into the remaining terms of the magic square we obtain 

 

     8        1       6 

     3        5        7 

     4        9       2 
 

which is exactly the magic square in the previous document.  Thus we have shown 

that every 3 by 3 magic square whose entries are  1 – 9  can be transformed to the 

original example by a (possibly empty) sequence of rotations and reflections. 

 
Additional references 

 
There is an extensive literature dealing with 3 by 3 and larger magic squares like 

the following example, which appears in Albrecht Dürer’s engraving Melencolia I: 
 

 
 

(Source: http://stickypix.net/up/files/21477_f4psw/Magic%20Squares.jpg) 
 

A more detailed discussion of magic squares is beyond the scope of this course, but 

here are two online references: 
 

http://en.wikipedia.org/wiki/Magic_square 
 

http://mathworld.wolfram.com/MagicSquare.html 
 

 


