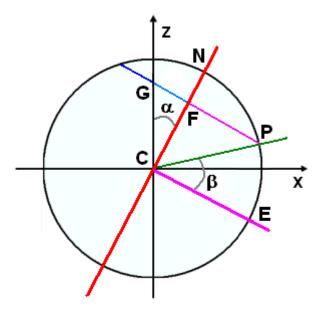
Derivation of the solstice formula

The goal is to derive the formula for the length of the longest day which appears in the document <u>http://math.ucr.edu/~res/solstice/solstice.pdf</u>. In this discussion β represents the latitude, and α is the angle 23.5 degrees (approximately the northernmost latitude that the sun reaches). We assume that β lies between 0 (the latitude of the equator) and 66.5 degrees North (the approximate latitude of the Arctic Circle).

Day Length =
$$24 \cdot \left(1 - \frac{1}{\pi} \operatorname{Arc} \cos (\tan \alpha \tan \beta)\right)$$

A table of values for this function in increments of one degree (less in higher latitudes) is given in the document <u>http://math.ucr.edu/~res/solstice/solstice-table.pdf</u>.

We begin with a drawing to describe the situation. In this drawing we assume that the y – axis is pointing upward from the surface of the document, and the drawing represents the planar slice defined by y = 0.

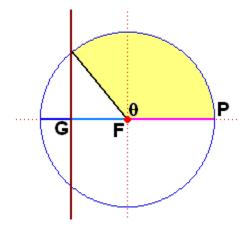


We assume that the earth corresponds to the sphere with equation $x^2 + y^2 + z^2 = 1$ in coordinate 3-space and that the sun is located at some point of the form (d, 0, 0) where d is much greater than 1. Then the points on the sphere illuminated by the sun lie in the half – space of all points whose x-coordinate is nonnegative.

The circle $\Gamma(\beta)$ of latitude β (North) goes through the point **P**, it is centered at **F** such that **PF** is perpendicular to **NC**, and the plane of the circle $\Gamma(\beta)$ is perpendicular to **F** at the latter point. This circle intersects the plane with equation x = 0 in exactly two points, and if β is positive then the major arc determined by these points has some angular measure 20. It follows that the amount of daytime at latitude β (in hours) is equal to $24 \cdot \theta/\pi$.

Clearly we need to find a formula for θ in terms of α and β . One step in this process is to find the lengths |FP| and |GF| of the segments [FP] and [GF]. Elementary trigonometry implies $|FP| = \cos \beta$. Similarly, the length β is equal to $\sin \beta$, and therefore it follows that $|GF| = |CF| \tan \alpha = \sin \beta \tan \alpha$.

Next, we need to express $|\mathbf{GF}|$ in terms of $\boldsymbol{\theta}$. In order to do this we need to take a different view of the circle containing the arc of latitude $\boldsymbol{\beta}$; the drawing below depicts this arc in the plane containing it, looking perpendicularly downward at the plane.



It follows that |FG| is equal to |FP|, which is $\cos \beta$, times the absolute value of $\cos \theta$, which is just $\cos (\pi - \theta)$. Therefore we have the following equation:

$$\cos (\pi - \theta) = |FG|/|FP| = \sin \beta \tan \alpha / \cos \beta = \tan \alpha \tan \beta$$

Therefore the total fraction of daylight time at the given latitude β is equal to

$$\frac{\theta}{\pi} = \frac{\pi - (\pi - \theta)}{\pi} = 1 - \frac{1}{\pi}(\pi - \theta)$$

and by the previous formula we know that $\pi - \theta$ is equal to $\operatorname{Arc \cos}(\tan \alpha \tan \beta)$. To find the total number of daylight hours, we need to multiply the resulting expression

$$1-\frac{1}{\pi}\operatorname{Arc}\cos\left(\tan\alpha\,\tan\beta\right)$$

by 24 (hours), and if we do so we obtain the formula at the beginning of the document.