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In his writings on coordinate geometry, Descartes emphasized that he was only willing to work
with curves that could be defined by algebraic equations. He was not able to find such equations
for some important curves from classical Greek geometry, including the quadratrix/trisectrix of
Hippias (c. 460 B.C.E.– c. 400 B.C.E.), and he excluded them from his setting by describing
them as “mechanical.” Several decades later, Leibniz took a much different view of the situation,
recognizing that curves that are not definable by algebraic equations can — and in fact should —
also be studied effectively using the methods of coordinate geometry and calculus.

Even though the Leibniz viewpoint is now universally accepted in analytic geometry and
calculus, one can still ask whether certain classical Greek curves in the plane with no reasonably
simple description by an algebraic equation are indeed not definable by an algebraic equation
F (x, y) = 0, where F is a nontrivial polynomial in x and y with real coefficients. The purpose
of this note is to prove that four important examples have no description of this type. One is
the quadratrix/trisectrix of Hippias, another is the Archimedean spiral, which is given in polar
coordinates by r = θ and in rectangular coordinates by

s(t) = (t cos t, t sin t)

yet another is the catenary which is the graph of the function y = cosh x, and the fourth is the
cycloid curve, which has the following standard parametrization:

x(t) = t − sin t , y(t) = 1 − cos t

Finally, we shall consider a classical family of curves known as epicycles and show that some are
algebraic but others are not.

In order to analyze the examples described above, we shall need some background results which
state that the so-called elementary transcendental functions do not satisfy identities of the form
F (x, f(x) ) ≡ 0, where F is a strongly nontrivial polynomial in two variables (in other words, it is
not a polynomial which is only a function of the first or second variable). This property is reflected
by the use of the word “transcendental” to describe these functions, but proofs of such results
do not appear in standard analytic geometry and calculus texts for several reasons (in particular,
the mathematical level of such proofs is well above the levels suitable for basic courses in single
variable calculus, and the results themselves are not needed for the usual applications of calculus to
problems in other subjects). The following online reference contains explicit statements and proofs
that exponential functions, logarithmic functions, and the six standard trigonometric functions do
not satisfy the types of algebraic equations described above:

http://math.ucr.edu/∼res/math144/transcendentals.pdf
The discussion here will be at about the same mathematical level, using some input from

advanced undergraduate and beginning graduate algebra courses together with standard results
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from calculus and differential equations courses. The following companion document contains
figures related to the discussion here:

http://math.ucr.edu/∼res/math153/transcurves2.pdf

Additional information on Descartes’ notion of mechanical curves appears in Section 13.3 of
the book by Stillwell cited in Section 6.

1. Algebraic curves and analytic parametrizations

Our goal is to prove a useful result which shows that if certain types of parametrized curves
satisfy an algebraic equation near a point then they do so everywhere.

PROPOSITION. Suppose that we are given a parametrized curve

s(t) = (x(t), y(t) )

defined on an open interval J containing t0, where the parametric equations are real analytic
functions on J . If there is a strongly nontrivial polynomial F (x, y) such that F os(t) = 0 for all t
sufficiently close to t0, then this equation holds for all t ∈ J .

Proof. Standard considerations show that the composite function F os(t) is real analytic on J (use
Fact 2 in Section I.4 of transcendentals.pdf), and it is zero on some subinterval (t0 − δ, t0 + δ).
Therefore, by Fact 3 from the section cited in the previous sentence we know that F os(t) is zero
everywhere on J .

2. The Catenary

This is the curve whose equation is

y = cosh x =
ex + e−x

2

and we claim that it is not algebraic. If it were, then we would have a polynomial identity
G(x, cosh x) ≡ 0, and by the results of transcendentals.pdf the latter would imply that for
some positive integer N the set of all functions of the form xj ekax — where |j|, |k| ≤ N — is
linearly dependent.

However, as in Section I.2 of transcendentals.pdf we know that the given functions form a
basic set of solutions for the linear differential equation

DN+1(D2 − a2)N+1(D2 − 4a2)N+1 ... (D2 − N2a2)N+1y = 0

and therefore no such polynomial identity can exist.
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3. The Archimedean Spiral

As noted above, the standard equation defining this curve AS in polar coordinates is r = θ,
where θ ≥ 0, and this yields the parametrization s(θ) = (θ cos θ, θ sin θ), where θ ≥ 0. We shall
show that there is no nonzero point p on this curve for which one can find an open neighborhood
U containing p and a strongly nontrivial polynomial G such that G ≡ 0 for all points on AS ∩ U .

By the proposition in the preceding section and the existence of real analytic parametric equa-
tions for AS, if one can find a point, open neighborhood and polynomial as above, then it follows
that G ≡ 0 on all points of AS. Denote the polynomial in question by G(x, y) =

∑

i,j ai,jx
iyj . Set

Hi(y) =
∑

j ai,jy
j , so that G(x, y) =

∑

i Hi(y) · xi.

CLAIM 1: Each horizontal line y = b and each vertical line x = c meets AS in infinitely many
points.

This seems clear if one sketches the curve (see Figure 1 in the file transcurves2.pdf), and
on the coordinate axes we know that the points

(

(−1)kkπ, 0
)

lie on both the spiral and the x-axis

while the points
(

0, (−1)k(k + 1
2 )π

)

lie on both the spiral and the y-axis. Since the problem is
symmetric in x and y, we shall only prove the statement regarding horizontal lines other than the
x-axis, so that c 6= 0; the argument in the vertical case is similar, and in fact we shall not need this
case subsequently.

The first step is to notice that if (x, b) lies on AS and c 6= 0 and (x, b) = s(θ), then we have

θ2 = x2 + b2 and cot θ =
x

b
.

This is illustrated in Figure 2 from the file transcurves2.pdf. We need to prove that, for each
nonzero real number b, there are infinitely many values of X which solve the resulting equation in
x:

x = b · cot
√

x2 + b2

If we make the change of variables u =
√

x2 + b2, this equation can be rewritten in the form
b cot u =

√
u2 − b2, and the goal translates to showing that there are infinitely many solutions to

this curve for which u > |b|. In the discussion below, k will denote an arbitrary positive integer
such that k > |b|/π.

CLAIM 2: If h(u) = b cot u −
√

u2 − b2, then for each k as above there is a real number uk

such that kπ < uk < (k + 1)π and h(uk) = 0.

The proof of this is similar to the proof that there are infinitely many solutions to the equation
tanx = x. Let ε be the sign of b. Then one has the following one-sided limit formulas:

lim
u→kπ+

ε · h(u) = +∞ lim
u→(k+1)π−

ε · h(u) = −∞

It follows tht there is some real number uk between kπ and (k + 1)π such that ε · h(uk) = 0, and
the claim follows because ε h(u) = 0 if and only if h(u) = 0.

Completion of the proof that AS is not algebraic. Suppose that G is a polynomial in two
variables such that G(x, y) = 0 for all (x, y) on AS. For each real number c we know there are
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infinitely many x such that G(x, c) = 0. If G(x, y) =
∑

i,j ai,jx
iyj =

∑

i Hi(y)xi, then for each
c the expression G(x, c) is a polynomial in x which has infinitely many roots, and therefore the
coefficients Hi(y) must be zero for all i. Since Hi(c) = 0 for all c, it follows that for each i we have
ai,j = 0 for all j; but this means that all the coefficients ai,j must vanish. This completes the proof
that AS is not algebraic (in fact, it is not algebraic even if one restricts to some open interval of
the positive real line).

4. The Quadratrix/Trisectrix of Hippias

The standard equation for this curve is y = x cot x for x 6= 0; this limit of the right hand side
as x → 0 is equal to 1 (e.g., this follows from L’Hospital’s Rule or more elementary considerations
— see the discussion below), so it is customary to add the point (0, 1) so that the curve becomes
continuous for |x| < π. Since the function cot x has convergent power series expansions on the
intervals (−π, 0) and (0, π), clearly the same is true for x cot x.

In fact, we should note that this function also has a convergent power series expansion on an
open interval containing the origin (the remainder of this paragraph may be skipped without loss of
continuity). — To prove the existence of such an expansion, first note that x/ cot x is the reciprocal
of the function tanx/x and that tan x has a power series expansion of the form x · g(x), where g is
a convergent power series with a nonzero constant term because

lim
t→0

tanx

x
= 1

which can be shown either by appealing to L’Hospital’s Rule or by a more direct elementary
argument using the fact that sinx/x has the same limit as x → 0. Therefore the function f(x) =
tanx/x (extended by setting f(0) = 1) is given by the convergent power series g(x). But now
standard results on power series state that if g is representable by a convergent power series near
0 and g(0) 6= 0 as in this case, then the reciprocal function 1/g also has a convergent power series
expansion near 0. Since this reciprocal function is equal to x cot x, extended so that its value at
0 is 1, the assertion about representing this function by a convergent power series near 0 follows
immediately.

We now return to our discussion of the quadratrix/trisectrix. This curve has infinitely many
disconnected pieces, but in classical Greek mathematics the portion of the curve receiving attention
was the connected piece in the first quadrant satisfying the additional condition 0 < x < 1

2π (see
Figure 3 in transcurves.pdf).

Our objective is to prove that (the coordinates for) the points on this piece of the curve do not
satisfy a strongly nontrivial polynomial equation in two variables. But this follows immediately by
combining the results in Sections II.2 and I.4 in transcendentals.pdf with the following simple
observation:

If the function f defined on an open interval J is transcendental on J , then so are the
functions xm · f for all m > 0. (If the latter is algebraic then there is a nontrivial
polynomial identity of the form

∑

i,j ai,jx
i+mj · f(x)j = 0, which we may rewrite in the

form
∑

p,q bp,qx
p · f(x)q. If r > 0 is the highest power of f(x) which appears nontrivially

in the first polynomial and s ≥ 0 is maximal such that as,r 6= 0, then it follows that
bs+mr,r = as,r 6= 0.)
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These considerations imply that x cot x is transcendental on the interval 0 < x < 1
2π, and from

this it follows that the coordinates on this piece of the curve do not satisfy a strongly polynomial
equation.

5. The cycloid

We can analyze this using the same methods employed for the Archimedean spiral. The first
step is to note two elementary properties of our parametrization of the cycloid:

x(t + 2π) = x(t) + 2π , y(t + 2π) = y(t), for all t ≥ 0

Also, since the explicit functions x(t) and y(t) are real analytic and the related power series converge
for all choices of t, we may use the results from Section 1 to conclude that if there is a point p on
the cycloid Θ, a small neighborhood U of p, and a strongly nontrivial polynomial G(x, y) such that
G ≡ 0 on Θ ∩ U , then G ≡ 0 on all of Θ.

The next step is similar to a crucial observation from Section 2:

CLAIM: If c lies in the interval [0, 2], then there are infinitely many points of Θ which lie on
the line y = c.

To prove this, observe that the formula y(t) = 1 − cos t implies that if c ∈ [0, 2] then there are
infinitely many choices of t such that y(t) = c.

We may now proceed exactly as in Section 2. Suppose that we have a polynomial G(x, y)
which vanishes at all points of Θ, and write G in the standard form G(x, y) =

∑

i,j ai,jx
iyj ;

as before, let Hi(y) =
∑

j ai,j yj , so that G(x, y) =
∑

i Hi(y) · xi. By the preceding claim we
know that for each c ∈ [0, 2] the polynomial G(x, c) has infinitely many roots, and therefore the
coefficients for all powers of x must be trivial. In other words, for each i and each c ∈ [0, 2] we have
Hi(c) = 0. But this also means that each polynomial Hi has infinitely many roots, so that Hi = 0
for all i, and the latter immediately implies that G = 0.

6. Epicycles

We have noted that the following book contains more information on Descartes’ notion of
mechanical curves:

J. Stillwell. Mathematics and Its History (2nd Ed.) Springer-Verlag, New York, 2002.
ISBN: 0–387–95336–1

Section 13.3 of this book (which treats such curves) also mentions a class of curves called
epicycles and notes that some are algebraic while others are transcendental. We shall conclude this
article with an explanation of the assertions in Stillwell.

Definition. An epicycle is a curve in R2 with a parametrization of the following form:

s(t) = b · (cos t, sin t) + a · (cos rt, sin rt) (where) b, r > 0
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Such curves were originally studied in classical Greek mathematics, and for centuries such
curves and their higher order analogs

∑

k

ck · (cos rkt, sin rkt)

were thought to give the orbits of planets about the earth in the standard geocentric models of the
universe. Usually we shall normalize our epicycles by setting b = 1; it is also customary to order
the summands of higher order cycloids so that c1 > · · · > cm. For the higher order epicycles that
arose in astronomy the ratios of successive terms ci/ci+1 are generally much smaller than 1.

Some illustrations of epicycles are contained in the following online sites:

http://www.mathpages.com/home/kmath639/kmath639.htm

http://www.math.harvard.edu/ knill/seminars/fashion/fashion.pdf

The first observations are fairly elementary, but afterwards we shall use freely use results from
elementary differential geometry and point set theory, and ultimately we shall also use some fairly
advanced (graduate level) material which goes beyond the usual introductory courses.

Ellipses and epicycles. The quickest proof that some epicycles are algebraic is given by the
following:

PROPOSITION. If a and b are positive, then the ellipse defined by the equation

x2

a2
+

y2

b2
= 1

is an epicycle.

This derivation of this is fairly straightforward and appears on pages 2–3 of the following online
reference:

http://wwwdata.unibg.it/dati/bacheca/63/21692.pdf

The main result. The rest of this section will be devoted to proving the following criterion
for determining whether an epicycle is algebraic or transcendental.

THEOREM. Let a and r be positive real number such that a < 2
3

and ra < 2
3
. Then the epicycle

s(θ) = (cos θ, sin θ) + a · (cos rθ, sin rθ)

is algebraic if r is rational and transcendental if r is irrational.

The inequalities for r and a reflect a point made earlier; namely, the radius of the second circle
is considerably smaller than the radius of the first (which is 1).

Sketch of proof. We shall begin with some general observations. The epicycles in the theorem
are given by parametric equations whose coordinates are real analytic functions defined over the
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entire real line. Furthermore, the inequality constraints imply that the tangent vectors are given
by

s′(θ) = (− sin θ, cos θ) + ra · (− sin rθ, cos rθ)

and since the vectors (− sinu, cos u) have length 1 it follows that

|s′(θ)| ≥ 1 − ra > 1
3

so that s′(θ) 6= 0 for all θ. By a standard consequence of the Inverse Function Theorem, we know
that s is locally 1–1 for all choices of θ. It will also be useful to have a factorization of the curve s
as T oγ, where T : C2 → C ∼= R2 is the linear transformation T (z1, z2) = z1 + a z2 and R → C2

is given by γ(θ) = (eiθ, eirθ).

Not surprisingly, the proof of the theorem splits into two cases depending on whether r is
rational or transcendental.

Suppose that r is rational. In this case write r = p/q, where the numerator and denominator
are both positive. It follows immediately that s(θ + 2qπ) = s(θ) for all θ, so that the image of
the entire curve is given by the image of the closed interval [0, 2qπ]. We know that the curve s is
locally 1–1, and in fact the Inverse Function Theorem and compactness imply that the image of s
is a finite union of subsets that are homeomorphic to closed intervals and are nowhere dense in R2.
Since a finite union of closed nowhere dense subsets is nowhere dense, this means that the image
of s is also nowhere dense.

It A denotes the image of the curve γ described above, then it follows immediately that
A ⊂ C2 ∼= R4 is the set defined by the equations |z1|2 = 1, |z2|2 = 1 and zp

1 = zq
2 ; in fact, the first

equation is a consequence of the others, but this is not important for our purposes. Therefore A is
the zero set of a finite number of real polynomial functions in four real variables, so that the points
on the epicycle are the image of A under the linear transformation T . Note that T has maximum
rank when viewed as either a real or complex linear transformation because it is onto.

More generally, one can ask the following question: Suppose that A ⊂ Rn is the zero set of a
finite number of real polynomials and T : Rn → Rm is an onto linear transformation. Is the image
T [A] also describable in terms of polynomials?

It is not difficult to construct examples where the image is not the zero set of finitely many
polynomials; in particular, this is the case if we take A to be the plane hyperbola x1x2 = 1 and
T : R2 → R to be the projection T (x1, x2) = x1, so that the image is the set of all nonzero points
on the real line. However, we do have the following fundamental result:

TARSKI–SEIDENBERG THEOREM. Let A ⊂ Rn be the zero set of finitely many polyno-
mial functions, and let T : Rm → Rn be an onto linear transformation. Then T [A] is a finite union
of semi – algebraic sets Bi such that each Bi is an intersection Ci ∩ Di, where Ci is the zero set of
some finite collection of polynomials, and Di is the set of points defined by some finite collection
of polynomial inequalities (it is possible that the collection of polynomials defining one of Ci or Di

is empty).

Another instructive example is given by the parabola x1 = x2
2. In this case the image of A is

the union of the sets where x1 = 0 and x1 > 0.
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Here are some online references for the Tarski-Seidenberg Theorem:

http://planetmath.org/encyclopedia/TarskiSeidenbergLojasiewiczTheorem.html

http://math.usask.ca/∼marshall/ts.ps

Returning to our discussion of epicycles for which the coefficient r is rational, we need to
examine the consequences of the Tarski-Seidenberg Theorem for this example. Take some real
number θ0 such that both coordinates of s′(θ0) are nonzero; for example, since ra < 2

3 we can
take θ0 = 1

4
π. For each i such that s(θ0) ∈ Di, pick one of the polynomials gi defining the set

Ci. Then we know that the intersection of Image(s) and the given Di’s satisfies the polynomial
equation G =

∏

gi = 0, where as before i runs over all indices such that s(θ0) ∈ Di.

By the preceding paragraph we know that G os(θ) = 0 for all θ sufficiently close to θ0. We
may now apply the results of Section 1 to conclude that G os(θ) = 0 for all real θ. Therefore the
epicycle under consideration is algebraic.

Suppose now that r is transcendental. In this case we need the following basic result:

KRONECKER–WEYL THEOREM. Let r > 0 be irrational, and let A ⊂ C2 be the set of
all points having the form (eiθ, eirθ) for some real number θ. Then the closure A of A is the set of
all (z1, z2) such that |z1|2 = |z2|2 = 1.

The closure is the set of all points in A together with the set of all points that are limits of
sequences of A. If f is a continuous real valued function and f = 0 on A, then f = 0 on the closure
of A.

Here is an online reference for the theorem:

http://mathworld.wolfram.com/Kronecker-WeylTheorem.html

A proof is sketched on page 22 of the following book:

S. Tabachnikov. Geometry and Billiards. Student Mathematical Library, Vol. 30.
American Math. Soc., Providence, 1995. ISBN: 2–856–29030–2.

Using the Kronecker-Weyl Theorem, we may now dispose of the irrational case as follows:
Suppose there is a polynomial G(x, y) such that G ≡ 0 on the image of s, which is equal to
T [A]. As noted above, by continuity we can then conclude that G ≡ 0 on T [A]. However, direct
examination shows that the latter is the set of all z ∈ C such that 1 − a < |z| < 1 + a. One can
now argue as in previous examples to show that the only polynomial which vanishes on such a set
is the zero polynomial.
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