SOLUTION TO PROBLEM 4 WITH "CORRECT" DRAWING INTERPRETATION

Let $(x, \pm Y)$ be the points where the parabola meets the vertical line $x=h$. Then $Y^{2}=4 p h$ and the volume of the cone is

$$
V_{\text {cone }}=\frac{1}{3} \cdot \pi Y^{2} h=\frac{4 p \pi h^{2}}{3}
$$

Furthermore, if we use the disk method to compute the volume for the paraboloid of revolution we obtain

$$
\begin{aligned}
V_{\text {paraboloid }}= & \int_{0}^{h} \pi y^{2} d x=\int_{0}^{h} \pi(4 p x) d x= \\
& 4 \pi p\left[\frac{x^{2}}{2}\right]_{0}^{h}=2 p \pi h^{2} .
\end{aligned}
$$

Taking ratio of the first volume to the second and simplifying, we find that this ratio is equal to $2 / 3 . ■$

