# GENERAL INFORMATION - JUNE 19, 2020 

## Statistics for the final examination

There were 150 points possible (with up to 25 additional for extra credit), and the cutoff scores are as follows:

$$
\begin{aligned}
& \mathrm{A}-133 \\
& \mathrm{~B}-95
\end{aligned}
$$

Since scores were so high, there was no need for a minimum score for a C, but students who did not submit an exam received a lower grade. Individual scores are posted on iLearn. The median score was 163.

Students with questions about the grading of the final should contact me by electronic mail since there is currently no date for the reopening of the campus. Appeals and queries regarding grading may be submitted as for the midterms with no formal deadline aside from standard University regulations or waivers which might be granted due to the irregular situation. Solutions for the exam questions will be posted in the course directory file exam2s20v2key.pdf.

## Statement on final grade determination:

As noted previously, the course grade will be determined by a weighted average of the grades on the examinations and the quizzes. The cutoff points for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}$ will be determined individually for each each of these constituents, and for grading purposes the raw numerical scores will be normalized by linear interpolation as follows:
$4.2=$ top score with full extra credit included, $4.0=$ nominal highest A, $3.0=$ lowest A, 2.0 $=$ lowest $\mathrm{B}, 1.0=$ lowest $\mathrm{C}, 0.0=$ lowest $\mathrm{D},-1.0=$ zero score. If the raw numerical score lies between two of these values, the normalized score will be determined by linear interpolation.

EXAMPLE. If the lowest A is 88 , the lowest B is 72 , and a student's raw numerical score is 76 , then the raw score is 4 points above the lowest $B$, the difference between the lowest $A$ and the lowest is 16 , and therefore the grade is $\frac{4}{16}=\frac{1}{4}$ of the way from the lowest B to the lowest A; linear interpolation means that the normalized score on the examination is $\mathbf{2 . 2 5}$.

