APPENDIX B

THE JOIN IN AFFINE GEOMETRY

In Section I1.5 we defined a notion of join for geometrical incidence spaces; specifically, if P and
() are geometrical subspaces of an incidence space S, then the join P x (@ is the unique smallest
geometrical subspace which contains them both. From an intuitive viewpoint, the name “join”
is meant to suggest that P x @) consists of all points on lines of the form xy, where x € P and
y € Q. If S is a projective n-space over some appropriate scalars I, this is shown in Exercise
16 for Section III.4, and the purpose of this Appendix is to prove a similar result for an affine
n-space over some F.

Formally, we begin with a generalization of the idea described above.

Definition. Let (5,11, d) be an abstract geometrical incidence n-space, and let X C S. Define
J(X) to be the set
X U{yeS|y€cuvforsomeu ve X }.

Thus J(X) is X together with all points on lines joining two points of X. Note that the con-
struction of J(X) from X can be iterated to yield a chain of subsets X € J(X) C J(J(X)) ---

The preceding discussion and definition lead naturally to the following:

QUESTION. If S is a geometrical incidence n-space and P and () are geometrical subspaces of
S, what is the relationship between P x @ and J(P UQ)? In particular, are they equal, at least
if S satisfies some standard additional conditions?

The exercise from Section I11.4 shows that the two sets are equal if S is a standard projective
n-space. In general, the next result implies that the two subsets need not be equal. but one is
always contained in the other.

Theorem B.1. In the setting above, we have J(PUQ) C P Q. However, for each n > 2 there
1s an example of a regular geometrical incidence spaces such that, for some choices of P and @,
the set J(P U Q) is strictly contained in P * Q.

Proof. The inclusion relationship follows from G(-2) and the fact that P+ @ is a geometrical
subspace of S. On the other hand, if we take the affine incidence space structure associated to
73 for n > 2, then for every subset X C Z™ we automatically have J(X) = X because every line
consists of exactly two points. Thus if W and U are vector subspaces of Z% such that neither
contains the other, then J(W U U) is not a vector subspace. Since 0 € W N U, we know that
W x U is the vector subspace W + U by Theorem 11.36, and it follows in this case that J(W UU)
is strictly contained in W x U.R

Note that the examples constructed in the proof are in fact affine incidence spaces. The main

objective of this appendix is to prove that J(PUQ) = PxQ if V is a vector space of dimension
> 2 over a field F which is not (isomorphic to) Z,.
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Theorem B.2. Let V be a vector space of dimension > 2 over a field F which is not (isomorphic
to) Zs, and suppose that P =a+ U and Q = b + W are geometrical subspaces of V. Then the
following hold:

(i) The join P x @ is the affine span of PU Q.
(i) PxQ = J(PUQ).

Proof. FIRST STATEMENT. If R is the affine span of P and @), then R is am affine subspace
containing P and @ by Theorem I1.19, Theorem I1.16 and Exercise 1 for Section I1.2 (this is
where we use the assumption that [ is not isomorphic to Zg). Therefore it follows that R also
contains Px (. On the other hand, if R’ is a geometrical subspace containing P and (), then by
Theorem II.18 it contains all affine combinations of points in P U @, and hence R’ must contain
R. Combining these observations, we conclude that R must be equal to P x Q).

SECOND STATEMENT. By the previous theorem we know that J(PUQ) C P* @, so it suffices
to show that we also have the converse inclusion P Q C J(P U Q).

Let x € PxQ, and let {dg, --- ,d,} and {co, --- ,c,} be affine bases for P and () respectively.
Then by the conclusion of the first part of the theorem we may write
P P
X = Z rid; + Z 55C;
i=0 j=0

where >, r; + 32, s; = 1. Lett =3, r;, sothat 3, s; = 1—¢. There are now two cases,
depending upon whether either or neither of the numbers ¢t and 1 — ¢ is equal to zero. If t = 0
or 1 —t =0 (hence t = 1), then we have x € P U Q. Suppose now that both ¢t and 1 — ¢ are

nonzero. If we set
q

P
r .
— —.d; — J ¢
“ ; t & ; a-0 %
then o € P, B € @, and x = ta + (1 —t)[; therefore it follows that x € J(P U Q).1




