
CHAPTER VI

MULTIDIMENSIONAL PROJECTIVE GEOMETRY

In this chapter we shall study coordinate projective spaces of arbitrary dimension. As in the previous
chapter, we shall use concepts from linear algebra extensively. Although some portions of this chapter
contain results of the previous one as special cases, most of the material involves concepts not covered
earlier in these notes.

One major difference between this chapter and the previous one is that we are mainly interested in

somewhat different types of results. In particular, we are interested in the geometric automorphisms of

a coordinate projective space FPn, and the results of this chapter give a simple but complete description

of them. In the final section of this chapter we shall assume that we have a field (or skew-field) of scalars

F which has a notion of ordering with the same basic properties of the orderings of the real or rational

numbers, and we shall analyze the geometrical implications of such algebraic orderings.

1. Linear varieties and bundles

Our first objective is to extend the results of Section V.1 on duality and homogeneous coordinates
from FP

2 to FP
n, where n ≥ 3 is arbitrary. As indicated in Theorem IV.16, if (S,Π, d) is an

n-dimensional projective (incidence) space, then the “points” of the dual projective n-space
(S∗,Π∗, d∗) are the hyperplanes of S. Suppose now that S = FP

n for some skew-field F; by
the results of Section V.1, if n = 2 then we can introduce homogeneous coordinates into the
dual projective plane

(
FP

2
)∗

. We shall extend this to all n ≥ 2, showing that one can define
well-behaved homogeneous coordinates for the hyperplanes of FP

n for all n ≥ 2 such that most
of the fundamental results from Section V.1 also extend to this more general setting.

According to Theorem III.12, a hyperplane in FP
n is definable by a right homogeneous linear

equation
n+1∑

i=1

ui xi = 0

where the coefficients ui are not all zero. Furthermore, two n-tuples (u1, · · · , un+1) and
(v1, · · · , vn+1) define the same hyperplane if and only if there is a nonzero k ∈ F such that
ui = k vi for all i (compare Section V.1). This immediately yields the following analog of
Theorem V.1:

Theorem VI.1. Let F be a skew-field, and let n ≥ 2. Then the set of hyperplanes in FP
n is in

1 − 1 correspondence with S1(F
1,n+1). Furthermore, if the hyperplane H corresponds to the left

1-dimensional vector subspace F · θ and X ∈ FP
n is given by ξ · F, then X ∈ H if and only if

θ · ξ = 0.�
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116 VI. MULTIDIMENSIONAL PROJECTIVE GEOMETRY

As before, if the hyperplaneH corresponds to the left 1-dimensional vector subspace Ω of F
1,n+1,

then a set of homogeneous coordinates for H is any nonzero vector in Ω.

Motivated by the preceding description of hyperplanes, we define a linear variety in FP
n to be

the set of all points whose homogeneous coordinates satisfy a system of linear homogeneous
equations

n+1∑

j=1

ui.jxj = 0 1 ≤ i ≤ m .

The following result shows that linear varieties are the same as geometrical subspaces.

Theorem VI.2. Let V be a linear variety defined by a system of linear homogeneous equations
as above, and suppose that the (left) row rank of the matrix B = (ui,j ) is equal to r. Then V
is an r-plane in FP

n.

Proof. If V0 is the solution space of the system of equations, then clearly V = S1(V0). Since
the rank of B is r, then dimension of V0 is equal to n+ 1− r by Theorem A.10, and hence V is
an (n− r)-plane in FP

n.

On the other hand, assume that W is a (k + 1)-dimensional vector subspace of F
n+1,1, so that

S1(W ) is a k-plane. Let w1, · · · wk+1 be a basis for W , and write wi = T(w1,i · · · wk+1,i).
Consider the left-homogeneous system of linear equations

∑

i

yiwj,i = 0 (1 ≤ i ≤ k + 1) .

Since the right column rank of the matrix C = (wj,i ) is equal to k+1, the left subspace of
solutions has dimension equal to n−k (again by Theorem A.10). Let v1, · · · vn−k be a basis for
the space of solutions, and write vi = (vi,1 · · · vi,n+1). Then, by construction, the vector
subspace W is contained in the space of solutions of the system

∑

j

vj,i xj = 0 (1 ≤ j ≤ n− k) .

On the other hand, the space of solutions W ′ has dimension equal to

(n+ 1) − (n− k) = k + 1 .

Since this is the dimension of W , we must have W ′ = W , and this proves the second half of the
theorem.�

Similarly, we may define a linear variety of hyperplanes to be the set of all hyperplanes whose
homogeneous coordinates satisfy a system of left-homogeneous linear equations

∑

i

ui xi,j = 0 (1 ≤ j ≤ m) .

If the right rank of X = (xi,j ) is r, the variety of hyperplanes is said to be (n−r)-dimensional.
The following result shows that linear varieties of hyperplanes are also equivalent to geometrical
subspaces of FP

n.

Theorem VI.3. An r-dimensional linear variety of hyperplanes in FP
n consists of all hyper-

planes containing a fixed (n − r − 1)-plane in the terminology of Chapter IV, a linear bundle
with the given (n − r − 1)-plane as center). Conversely, every (n − r − 1)-plane in FP

n is the
center of some linear variety of hyperplanes.
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Proof. The ideas are similar to those employed in Theorem 2. Let C0 be the span of the rows
of the matrix (xi,j ). By hypothesis, dimC0 = n− r. Thus C = S1(C0) is an (n− r−1)-plane in
FP

n, and every hyperplane containing it automatically belongs to the linear variety. Conversely,
if y0 ∈ C0, then we may write y =

∑
i xi ri where xi = (x1,i, · · · , xn+1,i) and ri ∈ F, so that

if H lies in the variety and θ is a set of homogeneous coordinates for H then we have

θ · y =
∑

i

(θ · xi) ri = 0 .

Thus every hyperplane in the variety contains every point of C. This proves the first half of the
theorem.

Now suppose that we are given an (n− r− 1)-plane Z = S1(Z0). Let z1, · · · , zn−r be a basis
for Z0, and write zj = (z1,j , · · · , zn+1,j). Consider the variety of hyperplanes defined by the
system of homogeneous equations

∑

j

ui zi,j = 0 (1 ≤ j ≤ n− r) .

Since the right rank of the matrix ( zi,j ) is equal to (n − r), this bundle is r-dimensional.
Furthermore, its center Z ′ is an (n − r − 1)-plane which contains every point of Z by the
reasoning of the previous paragraph. Therefore we have Z = Z ′.�

The preceding result has some useful consequences.

Theorem VI.4. Let ( FP
n )∗ be the set of hyperplanes in FP

n, and let Π∗ and d∗ be defined as
in Section IV.3. Then a subset S ⊂ ( FP

n )∗ is in Π∗ if and only if it is a linear variety of
hyperplanes, in which case d∗(S) is the dimension as defined above.�

Theorem VI.5. (compare Theorem V.1) The triple
(
( FP

n )∗ , Π∗, d∗
)

is a projective n-space which is isomorphic to S1(F
1,n+1).

Since Theorem 4 is basically a restatement of Theorem 3, we shall not give a proof. However, a
few remarks on Theorem 5 are in order.

Proof of Theorem 5. By Theorem 1 we have a 1–1 correspondence between ( FP
n )∗ and

S1(F
1,n+1). Furthermore, the argument used to prove Theorem 2 shows that r-dimensional

varieties of hyperplanes correspond to set of the form S1(V ), where V is an (r+ 1)-dimensional
left subspace of F

1,n+1 (merely interchange the roles of left and right in the proof, switch the
orders of the factors in products, and switch the orders of double subscripts). But r-dimensional
linear bundles correspond to r-dimensional linear varieties of hyperplanes by Theorems 3 and 4.
Combining these, we see that r-dimensional linear bundles of hyperplanes correspond to r-planes
in S1(F

1,n+1) under the 1–1 correspondence between ( FP
n )∗ and S1(F

1,n+1).�

By the Coordinatization Theorem (Theorem IV.18), this result implies the first half of Theorem
IV.16. On the other hand, if we interchange the roles of left and right, column vectors and row
vectors, and the orders of multiplication and indices in the reasoning of this section, we find
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that the dual of S1(F
1,n+1) is isomorphic to FP

n+1. In fact, this isomorphism h : S1(F
1,n+1)∗ →

S1(F
n+1,1) is readily seen to have the property that the composite h of∗ oe given by

FPn e
−−−−→

∼=
(FPn)∗∗

f∗

−−−−→ S1(F
1,n+1)∗

h
−−−−→ FPn

is the identity (here f ∗ is an isomorphism of dual spaces induced by f as in Exercise IV.3.4).
This establishes the second half of Theorem IV.16 and allows us to state the Principle of
Duality in Higher Dimensions:

Metatheorem VI.6. A theorem in projective geometry in dimension n ≥ 2 remains true if
we interchange the expressions point and hyperplane, the phrases r-planes in an n-space and
(n− r − 1)-planes in an n-space, and the words contains and is contained in.�

We shall now assume that F is commutative. Since F = F
OP in this case, the dual of FP

n

is isomorphic to FP
n. Hence the metatheorem may be modified in an obvious way to treat

statements about projective n-spaces over fields.

The cross ratio of four hyperplanes four hyperplanes in FP
n containing a common (n− 2)-plane

may be defined in complete analogy with the case n = 2, which was treated in Section V.2. In
particular, Theorem V.14 generalizes as follows.

Theorem VI.7. Let H1, H2, H3 be distinct hyperplanes through an (n − 2)-plane K in FP
n,

and let H4 6= H1 be another hyperplane through K. Let L be a line disjoint from K, and let Xi

be the unique point where L meets Hi for 1 = 1, 2, 3. Then the point X4 ∈ L lies on H4 if and
only if we have

XR(X1, X2, X3, X4) = XR(H1,H2,H3,H4) .

The proof of this result is formally identical to the proof of Theorem V.1.�

EXERCISES

1. Let F be a field, and let X, Y, Z ∈ FP
3 be noncollinear points. Suppose that homogeneous

coordinates for these points are respectively given as follows:

ξ =




x1

x2

x3

x4


 η =




y1

y2

y3

y4


 ζ =




z1
z2
z3
z4




Prove that the plane they determine has the following homogeneous coordinates:


∣∣∣∣∣∣

x2 x3 x4

y2 y3 y4

z2 z3 z,4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣

x1 x3 x4

y1 y3 y4

z1 z3 z,4

∣∣∣∣∣∣
,

∣∣∣∣∣∣

x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣




By Theorem A.11, not all of the four determinants vanish because ξ, η and ζ are
linearly independent. To see that X ,Y, Z lie on the above hyperplane, consider
the determinants of the three 4 × 4 matrices whose rows are given by Tω, Tξ, Tη
and Tζ, where ω runs through the three vectors in the set ξ, η, ζ.
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2. Explain why four points pi = (xi, yi, zi) ∈ F
3 (where 1 ≤ i ≤ 4) are coplanar if and only

if the 4 × 4 determinant ∣∣∣∣∣∣∣∣

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣
is zero, where F is a field. Formulate an analogous statement for n dimensions. [Hint: For both
parts, use the properties of determinants as described in Appendix A and the characterization
of hyperplanes in terms of n-dimensional vector subspaces of F

1,n+1.]

3. Write out the 3-dimensional projective duals of the following concepts:

(a) A set of collinear points.

(b) A set of concurrent lines.

(c) The set of all planes through a given point.

(d) Four coplanar points, no three of which are collinear.

(e) A set of noncoplanar lines.

4. What is the 3-dimensional dual of Pappus’ Theorem?

5. What is the 4-dimensional dual of two planes whose intersection consists of a line? What
kind of set is the intersection of the dualized objects?

6. Let {A, B, C, D} and {A′, B′, C ′′, D′} be two triples of noncoplanar points in a projective
3-space, and assume that the lines AA′, BB′, CC ′ and DD′ are concurrent. Prove that the lines
of intersection

G = plane(ABC) ∩ plane(A′B′C ′)
H = plane(ABD) ∩ plane(A′B′D′)
K = plane(ACD) ∩ plane(A′C ′D′)
L = plane(BCD) ∩ plane(B ′C ′D′)

are coplanar, and state and prove the converse.

7. Find the equations of the hyperplanes through the following quadruples of points in RP
4.

(a) 


2
3
1
0
1







4
2
0
1
0







1
0
1
0
1







0
1
0
2
0




(b) 


3
4
0
0
2







1
1
1
0
0







2
0
5
1
2







1
0
2
1
0
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2. Projective coordinate systems

Theorems V.6 and V.7, which yielded particularly convenient choices for homogeneous coordi-
nates in one or two dimensions, proved to be extremely useful in Chapter V. We shall prove
a corresponding result for higher dimensions in this section; as one might expect, this result
has corresponding importance in higher dimensional projective geometry. All the results of this
section (except for Exercise 1) are valid if F is an arbitrary skew-field.

Theorem VI.8. Let {B0, · · · , Br} be a set of independent points in FP
n, and let U be a point in

the r-plane B0 · · · Br such that every proper subset of {B0, · · · , Br, U} is independent. Then
homogeneous coordinates βi and ψ can be chosen for these points may be chosen such that

(‡) ψ = β0 + · · · + βr .

Furthermore, if β ′

i and ψ′ is another collection of homogeneous for these points such that (‡)
holds, then there is a nonzero a ∈ F such that ψ = ψ ′ a and βi = β′i a for i = 0, · · · , r.

Proof. . Since the points Bi are independent, if we take arbitrary homogeneous coordinates β̃i

and ψ then there exist unique scalars ci such that

ψ̃ = β̃0 c0 + · · · + β̃r cr .

None of the coefficients ci can be equal to zero, for otherwise a proper subset of {B0, · · · , Br, U}
would be independent, contradicting our assumption about such proper subsets. If we now take

βi = β̃i ci for each i, we then have the desired relation (‡) which is stated above.�

Conversely, suppose that (‡) is satisfied. If we are given arbitrary homogeneous coordinates β ′
i

and ψ′ for the points Bi and U , then there exist nonzero scalars a and qi such that ψ = ψ′ a
and βi = β′i qi. The new homogeneous coordinate vectors satisfy a relation of the form

ψ′ = β′0 q0 a
−1 + · · · + β′

r qr a
−1

and if (‡) is valid then all the coefficients on the right hand side must be equal to 1. In other
words, we must have bi a

−1 = 1 for all i or equivalently bi = a for all i, which is exactly what
we wanted to prove.�

Assume now that (‡) is valid, and let X be any point of the r-plane L = B0 · · · Br. A set
of homogeneous coordinates ξ for X is then a linear combination of the form ξ =

∑
i βi xi.

Since ξ is defined up to multiplication by a scalar factor and the vectors βj are defined up to
multiplication by a common scalar factor, it follows that the coefficients xi are also determined
up to multiplication by a common scalar factor, and such an ordered (r+ 1)-tuple (x0, · · · , xr)
of coefficients is called a set of homogeneous coordinates for X ∈ L relative to the projective

coordinate system (B0 · · · Br |U). It is frequently denoted by notation such as ~X(B0 · · · Br |U).
The set {B0, · · · , Br} is often called the coordinate simplex or fundamental simplex, the points
Bi are said to be the vertices of this coordinate simplex, and the point U is often called the unit
point because homogeneous coordinates for this point in the projective coordinate system are
given by (1, · · · , 1).

The homogeneous coordinates given in the definition of projective space may be viewed as a
special case of the preceding construction; specifically, if the unit vectors in F

n+1,1 are given by
ei, then the appropriate coordinate simplex has vertices ei · F and the corresponding unit point
is d · F, where d =

∑
i ei. This is often called the standard coordinate system.
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The next result describes the change in homogeneous coordinates which occurs if we switch from
one projective coordinate system to another.

Theorem VI.9. Let (B0 · · · Br |U) and (B∗
0 · · · B∗

r |U
∗) be two projective coordinate systems

for an r-plane in FP
n, and let X be a point in this r-plane. Then the homogeneous coordinates

xi and x∗i of X relative to these respective coordinate systems are related by the coefficients of
an invertible matrix A = ( ai,j ) as follows:

x∗i · ρ =

r∑

k=0

ai,k xk

Here ρ is a nonzero scalar in F.

Proof. Suppose that the coordinate vectors are chosen as before so that ψ =
∑

i βi and
ψ′ =

∑
i β

′
i. If ξ is a set of homogeneous coordinates for X, then homogeneous coordinates

for ξ are defined by the two following two equations:

ξ =
∑

i

βi xi ξ∗ =
∑

i

β∗i x
∗

i

Since the points lie in the same r-plane, we have

β∗i =
∑

k

βk ai,k

for sutiable scalars ai,k, and the matrix A with these entries must be invertible because the set
{B0 · · · Br} is independent. Straightforward calculation shows that

ξ =
∑

k

βk xk +
∑

i,k

β∗i ai,k xk =
∑

i

β∗i x
∗

i

which implies that x∗i =
∑

k ai,k xk. These are the desired equations; we have added a factor
ρ because the homogeneous coordinates are defined only up to a common factor.�

EXERCISES

1. Take the projective coordinate system on RP
3 whose fundamental simplex points Bi have

homogeneous coordinates

β0 =




1
1
0
0


 , β1 =




0
0
1
1


 , β2 =




0
1
1
0


 , β3 =




0
0
0
1




and whose unit point U has homogeneous coordinates

ψ =




1
0
0
0


 .
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Find the homogeneous coordinates of the point A with respect to the system (B0B1B2B3 | U)
where ordinary homogeneous coordinates α for A are given below; there are two parts to this
exercise corresponding to the two possibilities for A.

α =




2
1
4
1


 ,




1
1
3
0


 .

2. Let T be an invertible linear transformation on F
n+1,1 with associated invertible matrix A,

let T∗ be the associated geometric symmetry of FP
n, let (B0 · · · Bn | U) define the standard

homogeneous coordinate system, and let X ∈ FP
n have homogeneous coordinates given by

x0, · · · , xn. What are the homogeneous coordinates of X with respect to the coordinate system
(
T∗(B0) · · · T∗(Bn) | T∗(U)

)
?

3. Let (B0 · · · Bn |U) and (B∗
0 · · · B∗

n |U
∗) be two projective coordinate systems for FP

n.

Suppose that for all points X ∈ FP
n we know that ~X(B0 · · · Bn |U) and ~X(B∗

0 · · · B∗
n |U

∗)
determine the same 1-dimensional subspace of F

n+1. Prove that Bi = B∗
i for all i and also that

U = U∗.

4. Let (B0, B1, B2 |U) be a projective coordinate system for FP
2, and let X ∈ FP

2. Give a
formula relating the homogeneous coordinates η = (y1, y2, y3, y4) and ζ = (z1, z2, z3, z4) of X
with respect to the systems (B0, B1, B2 |U) and (B0, B1, U |B2), and prove that this formula is
correct.

5. Let (B0 · · · Bn |U) be a projective coordinate system for FP
n, and suppose that V is

another point such that no n+ 1 points in the set {B0, · · · , Bn, U, V } are dependent. Explain

why all the coordinates of ~V (B0 · · · Bn |U) are nonzero and no two coordinates are equal.



3. COLLINEATIONS 123

3. Collineations

At the beginning of Section II.6, we noted that an appropriate notion of isomorphism for figures
in Euclidean space is given by certain 1–1 correspondences with special properties. If one
analyzes the situation further, it turns out that the relevant class of 1–1 correspondences is
given by maps which extend to isometries of the Euclidean n-space R

n. Specifically, these are
1–1 mappings T from R

n to itself with the following two properties:

(i) If x and y are distinct points in R
n, then T satisfies the identity

d(x, y) = d
(
T (x), T (y)

)
;

in other words, T preserves distances between points.

(ii) If x, y and z are distinct points in R
n, then T satisfies the identity

measure(∠xyz) = measure
(
∠T (x)T (y)T (z)

)
;

in other words, T preserves angle measurements.

Further information on such mappings and closely related issues can be found in the Addendum
to Appendix A and the references cited there. For our purposes here, two important points are
(i) all such isometries of R

n are describable in a very simple and explicit manner, (ii) isometries
are geometric symmetries. Specifically, every such isometry of R

n ∼= R
n,1 is given by a mapping

of the form T (x) = Ax+b, where b ∈ R
n ∼= R

n,1 and A is an n×n matrix which is orthogonal;
the latter means that TA is equal to A−1 or equivalently that the rows and columns of A define
orthonormal sets of vectors. In this section we shall prove similar results for symmetries of
projective spaces, showing that all geometric symmetries of FP

n are also given by some fairly
basic constructions using linear algebra.

Frequently in this section we shall use the term collineation to denote an isomorphism from
one n-dimensional incidence space to another (assuming n ≥ 2). This name dates back to the
19th century, and at the time collineations were the first types of incidence space isomorphisms
to be considered abstractly.

Algebraic automorphisms and geometric symmetries

We have seen that every invertible (n + 1) × (n + 1) matrix A determines a collineation fA of
FP

n which is defined by the formula

fA(x · F) = Ax · F .

However, for many choices of F there are examples which do not have this form. In particular,
if F is the complex numbers C and χ denotes the map on F

n+1,1 which takes a column vector
with entries zj to the column vector whose entries are the complex conjugates1 zj, then there is
a well-defined collineation gχ on CP

n such that

gχ(x · C) = χ(x) · C

that can also be defined, but it turns out that such a map is not equal to any of the maps fA

described previously. The proof that gχ is a collineation depends upon the fact that complex
conjugation is an automorphism; i.e., we have z1 + z2 = z1 + z2, z1 · z2 = z1 · z2, and
conjugation is a 1–1 correspondence to C to itself because this map is equal to its own inverse.

1Recall that if a complex number is given by u + vi, where i
2 = −1, then its conjugate is equal to a− bi.
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More generally, if F is an arbitrary skew-field and χ is an automorphism of F, then one can
construct a similar collineation gχ on FP

n that is not expressible as fA for some A. One major
objective of this section is to prove that mappings of the form fA and gχ for the various choices
of A and χ determine all collineations of FP

n. In order to simplify the arguments, for the rest
of this section we shall assume that the skew-field F is commutative; at the end of the section
we shall discuss some aspects of the noncommutative case.

In fact, one of the most important prepreties of a collineation f from one coordinate projective
space to another (perhaps over a different field) is that the collineation determines an isomor-
phism Φf of the underlying fields; if the two projective spaces are identical, this isomorphism
becomes an automorphism. The first result of this section establishes the relationship between
collineations and field isomorphisms.

Theorem VI.10. Let f be a collineation from the projective space FP
n to the projective space

EP
n, where F and E are fields and n ≥ 2. Then there is an isomorphism

Φf : F −→ E

characterized by the equation

Φf

(
XR(Y1, Y2, Y3, Y4)

)
= XR

(
Φf (Y1), Φf (Y2), Φf (Y3), Φf (Y4)

)

where Y1, Y2, Y3, Y4 is an arbitrary sequence of collinear points such that the first three are
distinct and Y4 6= Y2.

There are three basic steps in the proof; namely, defining a map from F to E which dependes
upon some choices, showing that such a map is an isomorphism of fields, and finally showing
that the map is independent of the choices that were made at the first step. The second part
of the proof uses the results from Section V.5, and the third part — which is by far the longest
— relies heavily on results from Chapter V on cross ratios.

Proof of Theorem 10. Construction of a mapping from F to E. Let X0, X1 and U be
three distinct collinear points, and let q ∈ F. Then there is a unique point Q ∈ X0X1 such that
Q 6∈ P0 and XR(X0, X1, U,Q) = q. Define Φf (q) = XR

(
f(X0), f(X1), f(U), f(Q)

)
. Strictly

speaking, one should write this as Φf,X0,X1,U to indicate that it depends upon the choices of X0,
X1 and U .

We claim that the map Φf,X0,X1,U defines an isomorphism from F to E. — Since the elements of
E are in 1–1 correspondence with the elements of f(X0)f(X1)−{f(X0)} and f mapsX0X1−{X0}
bijectively to f(X0)f(X1) − {f(X0)}, it follows that Φf,X0,X1,U is 1–1 and onto. Furthermore,
to see that the latter map is an isomorphism, take another line L through X0, coplanar points
Z0 and D, and points A, B ∈ X0X1 as in Section V.3. Let f(Xi) = X ′

i, f [L] = L′, f(Z0) − Z ′
0,

f(A) = A′, f(D) = D′, and f(B) = B ′. If X is any point constructed from the unprimed point
as in Section V.5, let X ′ be the corresponding point constructed from the primed points. Since
f is a collineation, it is easy to verify that f(X) = X ′ for all point X constructed in Section V.5.
In particular, f(C) = C ′ and f(K) = K ′. But the latter equalities combined with Theorem
V.28 and V.29 imply that

Φf,X0,X1,U(a+ b) = Φf,X0,X1,U(a) + Φf,X0,X1,U (b) .
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Proof that the map Φf,X0,X1,U depends only on the line M containing X0, X1 and U . — It
suffices to show that

Φf,X0,X1,U

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)

for every quadruple of distinct points on X0X1. There are several cases to be considered.

Case 1. None of the points A, B, C, D is X0. If we choose homogeneous coordinates ξi for
Xi and ψ for U such that ξ0 + ξ1 = ψ, then homogeneous coordinates α, β, γ and δ for A, B,
C and D are given as follows:

α = XR(X0, X1, U,A)ξ0 + ξi
β = XR(X0, X1, U,B)ξ0 + ξi
γ = XR(X0, X1, U, C)ξ0 + ξi
δ = XR(X0, X1, U,D)ξ0 + ξi

and therefore we have

Φf,X0,X1,U

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)

by the formula established in Theorem V.13 and the fact that Φf,X0,X1,U is an isomorphism of
fields.

Case 2. One of the points is X0. We claim it suffices to consider the case A = X0. For by
Theorem V.12 there is a reordering

(
σ(A), σ(B), σ(C), σ(D)

)
of (A,B,C,D) such that σ(A) =

X0 and

XR
(
σ(A), σ(B), σ(C), σ(D)

)
= XR(A,B,C,D) .

If the assertion is correct for quadruples whose first term is X0, then

Φf,X0,X1,U

( (
σ(A), σ(B), σ(C), σ(D)

) )
=
(
σ
(
f(A)

)
, σ
(
f(B)

)
, σ
(
f(C)

)
, σ
(
f(D)

) )
.

Since the right hand side is equal to Φf,X0,X1,U

(
XR(A,B,C,D)

)
and the right hand side is equal

to XR
(
f(A), f(B), f(C), f(D)

)
, the cases where X0 is one of B, C or D follow.

By the preceding discussion, we might as well assume that X0 = A in Case 2. The remainder
of the argument for Case 2 splits into subcases depending upon whether X1 is equal to one of
the remaining points.

Subcase 2.1. Suppose that A = X0 and B = X1. Then by Theorem V.11 we have

XR(A,B,C,D) =
XR(A,B,U,D)

XR(A,B,U,C)
=

XR(X0, X1, U,D)

XR(X0, X1, U, C)
.

Note that the cross ratio XR(A,B,U,C) is nonzero because B 6= C. The assertion in this case
follows from the formula above and the fact that Φ is an automorphism.

Subcase 2.2. Suppose that A = X0 and C = X1. Then XR(A,B,C,D) = 1−XR(A,C,B,D),
and hence the assertion in this subcase follows from Subcase 2.1 and the fact that Φ is an
automorphism.

Subcase 2.3. Suppose that A = X0 but neither B nor C is equal to X1. Let

b = XR(X0, X1, U,B)
c = XR(X0, X1, U, C)
d = XR(X0, X1, U,D)
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so that homogeneous coordinates β, ξ0 and ξ1 for the points B, X0 and X1 can be chosen such
that β = bξ0 + ξ1, and hence the corresponding homogeneous coordinates γ = cξ0 + ξ1 for C
satisfy

γ = cξ0 + ξ1 = (c− b)ξ0 + (bξ0 + ξ1) .

Since B 6= C, it follows that c− b = 0. Therefore homogeneous coordinates δ for D are given by

δ = dξ0 + ξ1 =
d− b

c− b
(c− b)ξ0 + (bξ0 + ξ1) .

Therefore we have the identity

XR(A,B,C,D) =
d− b

c− b
.

The assertion in this subcase follows from the above formula and the fact that Φ is an isomor-
phism. This concludes the proof that Φ only depends upon the line L = X0X1.

Proof that the isomorphism Φf = Φf,M does not depend upon the choice of the line M . —
Once again, there are two cases.

Case 1. Suppose we are given two lines M and M ′ which have a point in common; we claim
that Φf,M = Φf,M ′ . Let V be a point in the plane of M and M ′ which is not on either line. If
X ∈M , let X ′ ∈M ′ ∩ V X; then

f(X ′) ∈ f [M ′] ∩ f(V )f(X)

because f is a collineation. Thus two applications of Theorem 15 imply

XR(A,B,C,D) = XR(A′, B′, C ′, D′)

XR
(
f(A), f(B), f(C), f(D)

)
= XR

(
f(A′), f(B′), f(C ′), f(D′)

)
.

On the other hand, we also have

Φf,M

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)
and

Φf,M ′

(
XR(A′, B′, C ′, D′)

)
= XR

(
f(A′), f(B′), f(C ′), f(D′)

)
.

Since every element of F has the form XR(A,B,C,D) for suitable points, the equations above
imply that Φf,M = Φf,M ′ .

Case 2. Suppose we are given two lines M and M ′ which have no points in common; we claim
that Φf,M = Φf,M ′ . Let M ′′ be a line joining one point in M to one point in M ′. Then two
applications of the first case imply that Φf,M = Φf,M ′′ = Φf,M ′ .�

The characterization of Φf in terms of the cross ratio implies some useful properties of the
construction Φ which sends a collineation FP

n → EP
n to the field isomorphism Φf : F → E.

Theorem VI.11. If f : P → P ′ and f ′ : P ′ → P ′′ are collineations of coordinate projective
n-spaces (where n ≥ 2), then Φgf = Φg

oΦf . If f : P → P is the identity, then Φf is the
identity on the underlying field. Finally, if g : P ′ → P is equal to f−1, then Φg = (Φf )−1.

Proof. If f is the identity, then we have

Φf

(
XR(A,B,C,D)

)
= XR

(
f(A), f(B), f(C), f(D)

)
= XR(A,B,C,D)

because f(X) = X for all X. If g and f are collineations then

Φg
oΦf

(
XR(A,B,C,D)

)
= Φg

(
XR
(
f(A), f(B), f(C), f(D)

) )
=
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XR
(
g of(A), g of(B), g of(C), g of(D)

)
= Φgf

(
XR(A,B,C,D)

)
.

To prove that Φf−1 = (Φf )−1, note that f of−1 = identity and f−1 of = identity combine
with the first two identities to show that the composites Φf−1

oΦf and Φf
oΦf−1 are both identity

maps, and these identities imply that Φf−1 = (Φf )−1.�

Collineations of FP
1

Of course, an incidence-theoretic definition of collineations for coordinate projective lines is
meaningless. However, if 1+1 6= 0 in F, then as in Section V.4 it is possible to define collineations
of FP

1 as 1–1 correspondences which preserve harmonic quadruples. With this definition, an
analog of Theorem 10 is valid. Details appear on pages 85–87 of the book by Bumcrot listed in
the bibliography (this is related to the discussion of von Staudt’s Theorem at the end of Section
V.4).

Examples

We have already noted that every invertible (n+1)×(n+1) matrix A over F defines a geometric
symmetry fA of FP

n, and by a straightforward extension of Exercise V.2.10 the mapping fA

preserves cross ratios; therefore, the automorphism ΦfA
is the identity. On the other hand, if χ

is an automorphism of F as above and gχ is defined as at the beginning of this section, then for
all distinct collinear points A, B, C, D in FP

n we have

χ
(
XR(A,B,C,D)

)
= XR

(
gχ(A), gχ(B), gχ(C), gχ(D)

)

and therefore Φgχ = χ. In particular, the latter implies the following:

For every field F, every automorphism χ of F, and every n > 0, there is a
collineation g from FP

n to itself such that Φg = χ.�

Later in the section we shall prove a much stronger result of this type.

The Fundamental Theorem of Projective Geometry

Before stating and proving this result, we need to state and prove some variants of standard
results from linear algebra. Let V and W be vector spaces over a field F, and let α be an
automorphism of F. A mapping T : V → V is said to be an α-semilinear transformation if it
satisfies the following conditions:

(1) T (x + y) = T (x) + T (y) for all x, y ∈ V .

(2) T (cx + y) = α(c)T (x) for all x ∈ V and c ∈ F.

If α is the identity mapping, this reduces to the usual definition of a linear transformation.

Theorem VI.12. Let V, W, F, α be as above. If v1, · · · ,vn is a basis for V and w1, · · · ,wn ∈
W , then there is a unique α-semilinear transformation T : V → W such that T (vi) = wi for
all i.
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Proof. Suppose that v ∈ V and that T and S are α-semilinear transformations from V to W
satisfying the conditions of the theorem. Write v as a linear combination

∑
i civi. Then we

have

T (v) = T

(
∑

i

civi

)
=
∑

i

α(ci)T (vi) =
∑

i

α(ci)wi =

∑

i

α(ci)S(vi) = S

(
∑

i

civi

)
= S(v)

and hence S = T . Conversely, if v is given as above, then T (v) =
∑

i α(ci)wi is a well-defined
α-semilinear transformation.�

This result has the following basic consequence:

Theorem VI.13. In the setting above, the mapping T is 1 − 1 and onto if and only if the
vectors w1, · · · ,wn form a basis for W . In this case the inverse map T −1 is an α−1-semilinear
transformation.

Proof. Since the image of T is contained in the subspace spanned by the vectors wi, it follows
that T cannot be onto if these vectors do not span W . Conversely, suppose that these vectors do
form a basis. Then by the previous result there is an α−1-semilinear transformation S : W → V
such that S(wi) = vi for all i. It follows that S oT is an α−1 oα-semilinear (hence linear)
transformation from V to itself which sends vi to vi for all i, and hence S oT . Reversing the
roles of V and W and also the roles of S and T in this argument, we conclude similarly that
T oS is the identity. Therefore the α-semilinear map S is an inverse to T and the latter is 1–1
and onto.�

If F and n are as in Theorem 12 and T is an invertible α-semilinear transformation from F
n+1,1

to itself, then as in Section 4.3 there is a collineation fT from FP
n to itself defined by

fT (X) = T (ξ) · F

where ξ is an arbitrary set of homogeneous coordinates for X; this does not depend upon the
choice of homogeneous coordinates, for if ξ ′ = cξ is another set of homogeneous coordinates for
X we have

T (cξ) · F = α(c) · T (ξ) · F = T (ξ) · F .

The proof that this map defines a collineation proceeds exactly as in the case of linear trans-
formations, the only change being the need to substitute T (cv) = α(c) · T (v) in place of
T (cv) = c · T (v) when the latter appears.

The Fundamental Theorem of Projective Geometry is a converse to the preceding construction,
and it shows that every collineation of FP

n to itself has the form fT for a suitably chosen
invertible α-linear mapping T from F

n+1,1 to itself.

Theorem VI.14. (Fundamental Theorem of Projective Geometry) Let {X0, · · · , Xn, A} and
{Y0, · · · , Yn, B} be two sets of (n+ 2) points in FP

n (where n ≥ 2) such that no proper subset
of either is dependent, and let χ be an automorphism of F. Then there is a unique collineation
f of FP

n to itself satisfying the following conditions:

(i) f(Xi) = Yi for 0 ≤ i ≤ n.

(ii) f(A) = B.

(iii) Φf = χ.
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The theorem (with the proof given here) is also valid if n = 1 and 1 + 1 6= 0 in F, provided
collineations of FP

1 are defined in the previously described manner (i.e., preserving harmonic
quadruples).

Proof. EXISTENCE. According to Theorem 8 we can choose homogeneous coordinates ξ for
Xi, ηi for Yi, α for A, and β for B so that α =

∑
i ξi and β =

∑
i ηi. The hypotheses

imply that the vectors ξi and ηi form bases for F
n+1,1, and therefore there is an invertible α-

semilinear transformation of the latter such that T (ξi) = ηi for all i. Then fT is a collineation
of FP

n sending Xi to Yi and A to B. In order to compute the automorphism induced by f ,
let Q1, Q2, Q3, Q4 be distinct collinear points with homogeneous coordinates θi for Qi chosen
such that θ3 = θ1 + θ2 and θ4 = qθ1 + θ2, where q = XR(Q1, Q2, Q3, Q4). We then have
T (θ3) = T (θ1) +T (θ2) and T (θ4) = χ(q) · T (θ1) + T (θ2), so that

χ
(

XR
(
Q1, Q2, Q3, Q4)

)
= XR

(
fT (Q1), fT (Q2), fT (Q3), fT (Q4)

)
.

It follows that ΦfT
= χ.�

UNIQUENESS. Suppose that f and g are collineations of FP
n which satisfy f(Xi) = g(Xi) = Yi

for 0 ≤ i ≤ n, f(A) = g(A) = B, and Φf = Φg = χ. Then h = g−1 of is a collineation
which satisfies h(Xi) = Xi for 0 ≤ i ≤ n, h(A) = A, and Φh is the identity. If suffices to show
that a collineation h satisfying these conditions must be the identity.

Let h be a collineation such that Φh is the identity, and suppose that h leaves three distinct points
on a line fixed; we claim that h leaves every point on the line fixed. To see this, suppose that
X1, X2 and X3 are distinct collinear points such that h(Xi) = Xi for all i, and let Y ∈ X1X2.
Then we have

XR
(
X1, X2, X3, h(Y )

)
= Φh

(
XR(X1, X2, X3, Y )

)
= XR(X1, X2, X3, Y )

and hence h(Y ) = Y by Theorem V.10.

Now assume that h satisfies the conditions in the first paragraph of this argument. We shall
prove, by induction on r, that h fixes every point in the r-plane X0 · · · Xr. The statement
is trivially true for r = 0, so assume that it is true for r − 1, where r ≥ 1. By the dimension
formula, the intersection of the subspaces X0 · · · Xr and AXr+1 · · · Xn is a point which we
shall call Br. In fact, homogeneous coordinates βr for Br are given by

βr = ξ0 + · · · + ξr

because the right hand side is set of homogeneous coordinates for a point in the intersec-
tion. Since h(Xi) = Xi and h(A) = A, it follows that h maps the subspaces X0 · · · Xr

and AXr+1 · · · Xn into themselves. Thus the intersection of these subspaces (namely, the one
point set {Br}) must be mapped into itself and hence h(Br) = Br.

We claim that h fixes every point on the line XrBr fixed. By hypothesis h(Xr) = Xr, and by the
preceding paragraph h(Br) = Br. Hence h maps XrBr into itself. Since XrBr and X0 · · · Xr−1

are both contained in X0 · · · Xr, the dimension formula implies that they intersect in a point
W . Since W ∈ X0 · · · Xr−1, the induction hypothesis implies that h(W ) = W . Homogeneous
coordinates ω for W are given by

ω = βr − ξr = ξ0 + · · · + ξr−1

and hence the points Xr, Vr and W are distinct collinear points. Since each is left fixed by h, it
follows that every other point in XrBr is also left fixed by h.



130 VI. MULTIDIMENSIONAL PROJECTIVE GEOMETRY

 

 
Figure VI.1

(r = n = 3)

Now let Z be any point of X0 · · · Xr not on either X0 · · · Xr−1 or XrBr. We claim that
h(Z) = Z. Since XrBr and X0 · · · Xr−1 are both contained in X0 · · · Xr, the dimension
formula implies that X0 · · · Xr−1 and the plane ZXrBr intersect in a line we shall call L. The
assumption that Z 6∈ X0 · · · Xr−1 implies that Z 6∈ L.

Let M1 and M2 be two distinct lines in ZXrBr containing Z; since there are at least three lines
in the plane ZXrBr containing Z, we may choose M1 and M2 such that neither line contains
the point Br in which L meets XrBr; in particular, this means that the intersections of Mi with
L and XrBr are distinct points.

Let Si ∈Mi ∩ L, and let Di ∈M2 ∩XrBr (here i = 1 or 2). Then h(Ci) = Ci and h(Di) = Di.
Since the intersections of Mi with L and XrBr are distinct points, it follows that h leaves two
distinct points of Mi fixed and hence h maps each line Mi into itself. Therefore it also follows
that h maps M1 ∩M2 = {Z} into itself, so that h(Z) = Z.

The preceding argument shows that h leaves every point of X0 · · · Xr fixed, completing the
inductive step of the argument. Therefore, by induction we conclude that h is the identity on
FP

n = X0 · · · Xn.�

One immediate consequence of the Fundamental Theorem is particularly worth stating at this
point:

Theorem VI.15. Let f be a collineation of FP
n, and let Φf = α. Then there is an invertible

α-semilinear transformation T of F
n+1,1 such that if X ∈ FP

n and ξ is a set of homogeneous
coordinates for X then f(X) = T (ξ) · F.

Proof. Let {X0, · · · , Xn, A} be a set of of (n+ 2) points in FP
n such that no proper subset

is dependent. By the proof of existence in the Fundamental Theorem there is an invertible
α-semilinear transformation T such that the associated collineation fT satisfies the following
conditions:
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(i) f(Xi) = fT (Xi) for 0 ≤ i ≤ n.

(ii) f(A) = fT (A).

Also, by construction the maps f and fT determine the same automorphism of F. We may now
apply the uniqueness portion of the Fundamental Theorem to conclude that f = fT .�

Definition. A collineation f of FP
n is projective if the associated automorphism Φf is the

identity. Theorem 11 implies that the set of projective collineations is a subgroup — in fact,
a normal subgroup — of the collineation group, and by the previous construction of examples
we know that the quotient of the collineation group by the subgroup of projective collineations
is equal to the automorphism group of F. Further information along these lines is discussed in
Exercise 9 below.�

Special cases

We conclude this section with some remarks on collineations if F is the real or complex numbers.

Theorem VI.16. For each n ≥ 2, every collineation of real projective n-space RP
n is projective.

By the previous results of this section, the proof of Theorem 15 reduces to showing the following:

Theorem VI.17. The only automorphism of the real numbers is the identity map.

Proof(s). If χ is an isomorphism of R, then χ(0) = 0 and χ(0) = 1. Suppose χ(r) = r for
r ≥ 1. Then χ(r + 1) = χ(r) + χ(1) = r + 1, and hence χ agrees with the identity on all
nonnegative integers. If k is a negative integer and k = −m, then

χ(k) = χ(−m) = −χ(m) = −m = k

and hence χ is the identity on integers. If r is a rational number, write r = m/n where m is an
integer and n is a positive integer. Then n = rm implies that

m = χ(m) = χ(nr) = χ(n) · χ(r) = n · χ(r)

which implies that χ(r) = m/n = r, and hence we see that χ fixes every rational number.

Suppose now that x is an arbitrary nonnegative real number. We claim that χ(x) ≥ 0. Re-
call that x ≥ 0 if and only if x = y2 for some y. Therefore x ≥ 0 and x = y2 imply that
χ(x) = χ(y)2 ≥ 0. Similarly, if a and b are real numbers such that a ≥ b, then

χ(a) − χ(b) = χ(a− b) ≥ 0

implies that χ(a) ≥ χ(b). Since χ is 1–1 it also follows that a > b implies χ(a) > χ(b).

Finally, suppose that we have an element r ∈ R such that χ(r) 6= r. If χ(r) < r, then there
is a rational number q such that χ(r) < q < r. But this implies χ(r) < χ(q) = q, and this
contradicts the conclusion χ(r) > χ(q) which follows from the previous paragraph. Therefore
χ(r) < r is impossible, so that χ(r) ≥ r for all real numbers r.
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Now χ−1 is also an automorphism of R, and if we apply the previous reasoning to this automor-
phism we conclude that χ−1(r) ≥ r for all r. Since we had previously shown that automorphisms
are strictly increasing functions, if we apply χ to the previous inequality we obtain

r = χ oχ−1(r) ≥ χ(r)

and if we combine this with the final inequality of the preceding paragraph we conclude that
χ(r) = r for all real numbers r.�

The analog of Theorem 16 does not hold for the complex numbers. In particular, at the beginning
of this section we showed that the map gχ of CP

n given by conjugating homogeneous coordinates
is a collineation that is not projective. Further information on automorphisms of the complex
numbers and their applications to projective geometry appears in Appendix D.

EXERCISES

In the problems below, assume that F is a field and χ is an automorphism of F.

1. Let A be an invertible n × n matrix over F, and let fA be the projective collineation
of FP

n defined by A (in other words, if ξ are homogeneous coordinates for X, then Aξ · F are
homogeneous coordinates for fA(X)). IfH is a hyperplane in FP

n with homogeneous coordinates
θ, prove that T [H] has homogeneous coordinates θ ·A−1 (compare Exercise V.1.5).

2. In the notation of Exercise 1, suppose that a collineation T is defined such that if ξ are
homogeneous coordinates for X, then Aχ(ξ) are homogeneous coordinates for T (X). Express
homogeneous coordinates for T [H] in terms of θ, A−1 and χ. You may use the product formula
χ(A ·B) = χ(A) · χ(B) for matrix multiplication. Also, recall that χ(0) = 0.

3. Suppose that f is a collineation of FP
n with induced automorphism Φf , and suppose that

H1, H2, H3, H4 are distinct hyperplanes containing a common (n − 2)-plane. Prove that the
cross ratio formula

Φf

(
XR(H1,H2,H3,H4)

)
= XR

(
f [H1], f [H2], f [H3], f [H4]

)

holds without using Exercise 2.

4. Suppose that T is an invertible χ-semilinear transformation of F
n+1,1 where n ≥ 1 such

that the associated collineation fT of FP
n is the identity. Prove that T is a scalar multiple of

the identity. [Hint: By assumption, for each nonzero vector x there is a nonzero scalar cx such
that T (x) = cx · x. If cx 6= cy, explain why x and y must be linearly independent. Consider
T (x + y) in this case.]

5. (a) Let T be an invertible χ-semilinear transformation of F
n where n ≥ 1, and let z ∈ F

n.
Show that

G(x) = T (x) + z

is a geometric symmetry of the affine incidence n-space F
n. [Hint: Compare this statement to

the examples following Theorem II.39.]

(b) Prove that G extends to a collineation g of FP
n for which Φg = χ; in other words, we have

g oJ = J oG on F
n. [Hint: Compare Exercise IV.4.14.]
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(c) If n ≥ 2, prove that every geometric symmetry f of F
n is given by a transformation of the

type described in (a). [Hint: By Exercise 2 at the end of Chapter IV, the map f extends to
a collineation g of FP

n. Since the collineation leaves the hyperplane at infinity fixed, certain
entries of an (n+ 1) × (n+ 1) matrix inducing g must vanish. But this implies the matrix has
the form of one constructible by (b).]

(d) Determine whether Aff(Fn) is the entire group of geometric symmetries of F
n when F is

the real and complex numbers respectively.

6. Suppose that A is an invertible m×m matrix over a field F such that 1+1 6= 0 in F. Prove
that F

m,1 contains two vector subspaces W+ and W− with the following properties:

(i) Ax = x if x ∈W+ and Ax = −x if x ∈W−.

(ii) W+ + W− = F
m,1 and W+ ∩ W− = {0}.

[Hint: Let W± be the image of A ± I. This yields the first part. To prove the rest, use the
identity

I = 1
2
(A+ I) − 1

2
(A− I) .]

Definition. An involution of FP
n is a collineation f such that f of is the

identity but f itself is not the identity. If f(X) = X, then X is called a fixed
point of the involution.

7. (a) Let T be an invertible χ-semilinear transformation of F
n+1,1 such that the induced

collineation fT of FP
n is an involution. Prove that T 2 is a scalar multiple of the identity. [Hint:

Use Exercise 4.]

(b) Suppose that T is an involution of RP
n. Prove that T is induced by an invertible (n+ 1) ×

(n+ 1) matrix A such that A2 = ± 1.

(c) In the previous part, prove that T has no fixed points if A2 = −I. Using Exercise 6, prove
that T has fixed points if A2 = 1. [Hint: For the first part, suppose that X is a fixed point with
homogeneous coordinates ξ such that A · ξ = c · ξ for some real number c. However, A2 = −I
implies that c2 = −1.] — NOTATION. An involution is called elliptic if no fixed points exist
and hyperbolic if fixed points exist.

(d) Using Exercise 6, prove that the fixed point set of a hyperbolic involution of RP
n has the

form Q1 ∪Q2, where Q1 and Q2 are disjoint n1- and n2-planes and n1 + n2 + 1 = n.

8. Suppose that A 6= B, and that A and B are the only two points of the line AB left fixed by
an involution f of RP

n. Prove that XR
(
A,B,C, f(C)

)
= −1 for all points C on AB−{A,B}.

[Hint: Find an equation relating XR
(
A,B,C, f(C)

)
and XR

(
A,B, f(C), C

)
.]

9. Let Coll (FP
n) denote the group of all collineations of FP

n, let Aut(F) denote the group
of (field) automorphisms of F, and let Φ : Coll (FP

n) → Aut(F) denote the homomorphism
given by Theorem VI.10.

(a) Why is the kernel of Φ the group Proj (FP
n) of all projective collineations, and why does

this imply that the latter is a normal subgroup of Coll (FP
n)?

(b) Show that Coll (FP
n) contains a subgroup Γ isomorphic to Aut(F) such that the restricted

homomorphism Φ|Γ is an isomorphism, and using this prove that every element of Coll (FP
n)

is expressible as a product of an element in Proj (FP
n) with an element in Γ. [Hint: Look

at the set of all collineations of the form gχ constructed at the top of the second page of this
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section, where χ ∈ Aut(F), and show that the set of all such collineations forms a subgroup of
Coll (FP

n) which is isomorphic to Aut(F).]

(c) Suppose that A is an invertible (n+1)× (n+1) matrix over F and χ is an automorphism of
F, and let fA and gχ be the collineations of FP

n defined at the beginning of this section. By the
previous parts of this exercise and Theorem 15, we know that gχ

ofA
o(gχ)−1 has the form fB for

some invertible (n+ 1) × (n+ 1) matrix B over F. Prove that we can take B to be the matrix
χ(A) obtained by applying χ to each entry of A. [Note: As usual, if two invertible matrices are
nonzero scalar multiples of each other then they define the same projective collineation, and in
particular we know that fB = fcB for all nonzero scalars c; this is why we say that we take B
to be equal to χ(A) and not that B is equal to χ(A).]

10. Let F be a field, let 0 < r ≤ n where n ≥ 2, letQ be an r-plane in FP
n. Let {X0, · · · , Xr, A}

and {Y0, · · · , Yr, B} be two sets of (r + 2) points in Q such that no proper subset of either is
dependent. Then there is a projective collineation f of FP

n to itself such that f(Xi) = Yi for
0 ≤ i ≤ r and f(A) = B. [Hint: Let W be the vector subspace of F

n+1,1 such that Q = S1(W ),
define an invertible linear transformation G on W which passes to a projective collineation of
Q with the required properties as in the proof of the Fundamental Theorem, extend G to an
invertible linear transformation G of F

n+1,1, and consider the projective collineation associated
to G.]

11. (i) If T is a projective collineation of the complex projective space CP
n, prove that there is

a point x ∈ CPn such that T (x) = x (i.e., a fixed point). [Hint: Every square matrix A over
the complex numbers has a nonzero eigenvector y such that A(y) = cy for some scalar c ∈ C.]

(ii) Explain why a similar result holds for the real projective space RP
n if n is even. [Hint:

Every square matrix A over the reals with an odd number of rows and columns has a nonzero
real eigenvector y such that A(y) = cy for some scalar c ∈ R.]

REMARK. The corresponding result for RP
2n+1 is false. An explicit example is

defined by the linear transformation of R
2n+2 sending (x1, y1, · · · , xn+1, yn+1)

to (y1,−x1, · · · , yn+1,−xn+1).
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4. Order and separation

All of the analytic projective geometry done up to this point is valid for an arbitrary F for
which 1 + 1 6= 0. Certainly one would expect that real projective spaces have many properties
not shared by other coordinate projective spaces just as the field of real numbers has many
properties not shared by other fields. The distinguishing features of the real numbers are that it
is an ordered field and is complete with respect to this ordering. In this section we shall discuss
some properties of projective spaces over arbitrary ordered fields and mention properties that
uniquely characterize real projective spaces.

Given points u, v ∈ R
n, let d(u,v) be the distance from u to v. One characterization of the

statement

y is between x and z

is that it holds if and only if d(x, z) = d(x,y)+d(y, z). Another more algebraic characterization
follows immediately from this.

Theorem VI.18. If x, y, z ∈ R
n are distinct points, then d(x, z) = d(x,y) + d(y, z) holds if

and only if y = tx + (1 − t)z for some t satisfying 0 < t < 1.

Proof. Recall that d(u,v) is the square root of

(u − v) · (u − v) = |u − v|2 .

The proof of the Triangle Inequality for inner (or dot) products is a consequence of the Cauchy-
Schwarz inequality

(x− y) · (y − z) ≤
∣∣(x − y) · (y − z)

∣∣ ≤ |x − y| · |y − z|

and equality holds in the Triangle Inequality if and only if the end terms of the Cauchy-Schwarz
inequality are equal.2 However, the Cauchy-Schwarz inequality states that the middle term and
right hand term are equal if and only if x− y and y− z are linearly dependent. Since both are
nonzero, this means that (y − z) = k(x − y) for some k 6= 0. On the other hand, the left and
right hand terms are equal if and only if both are nonnegative. Consequently, if the end terms
are equal, then (y− z) = k(x−y) and also k|x−y| ≥ 0. This implies that k must be positive.
Conversely, if k > 0 then the end terms of the Cauchy-Schwarz inequality are equal.

Thus d(x, z) = d(x,y) + d(y, z) if and only if y − z is a positive multiple of x − y. But if
y − z = k(x − y), then

y =
k

k + 1
x +

1

k + 1
z .

Since k > 0 implies

0 <
k

k + 1
< 1

it follows that if d(x, z) = d(x,y) + d(y, z) then y = tx + (1 − t)z for some t satisfying
0 < t < 1.

Conversely, if y = tx + (1 − t)z for some t satisfying 0 < t < 1, then

y − z =
t

1 − t
(x− y) .

2See pp. 177–178 of Birkhoff and MacLane or pp. 277–278 of Hoffman and Kunze for further details.
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Since t/(1 − t) is positive if 0 < t < 1, it follows that d(x, z) = d(x,y) + d(y, z).�

With this motivation, we define betweenness for arbitrary vector spaces over arbitrary ordered
fields.

Definition. Let F be an ordered field, let V be a vector space over F, and let x, y, z be
distinct points of V . We shall say that y is between x and z, written BBB(x,y, z), if there is
some t ∈ F such that 0 < t < 1 and y = tx + (1 − t)z. Frequently we shall also say that the
points x, y, z satisfy the ordering relation BBB(x,y, z). The closed segment [x; z] consists of x,
z, and all y such that y is between x and z. In Exercise 1 below this is compared to the usual
definition of closed interval in R.

 
 

 

Figure VI.2

The open segment (x; z) consists of all y such that y is between x and z.

The next results show that our definition of betweenness satisfies some properties that are
probably very apparent. However, since we are dealing with a fairly abstract setting, it is
necessary to give rigorous proofs.

Theorem VI.19. Let F be an ordered field, let V be a vector space over F, and let a, b, c
be distinct vectors in V . If BBB(a,b, c) is true, then so is BBB(c,b,a). However, each of the four
statements BBB(b,a, c), BBB(c,a,b), BBB(a, c,b), BBB(b, c,a) is false.

Proof. By assumption b = ta+(1−t)c for some t satisfying 0 < t < 1. The latter inequalities
imply 0 < (1 − t) < 1, and since t = 1 − (1 − t) it follows that BBB(c,b,a) is true.

The equation b = ta + (1 − t)c (where 0 < t < 1) implies that −ta = −b + (1 − t)c, which
in turn means that

t−1b − t−1(1 − t)c = t−1b + (1 − t−1)c .

Therefore a = sb + (1 − s)c then implies s = t−1. Since 0 < t < 1 implies t−1 > 1, it follows
that BBB(b, c,a) is false. Furthermore, it also follows that BBB(a, c,b) is false, for if the latter were
true then by the preceding paragraph the order relation BBB(b, c,a) would also be true.

Finally, b = ta + (1 − t)c (where 0 < t < 1) implies that (t − 1)c = ta − b, which in turn
implies that

c =
t

t− 1
a +

−1

t− 1
b .

Now 0 < t < 1 implies t− 1 < 0, so that

t

t− 1
< 0 .



4. ORDER AND SEPARATION 137

The latter means thatBBB(c,a,b) is false, and as in the previous paragraph it follows thatBBB(a, c,b)
is also false.�

Theorem VI.20. Let F and V be as above, and let a and b be distinct vectors in V . Then c ∈ V
lies on the line ab if and only if one of c = a, c = b, BBB(a,b, c), BBB(c,a,b) or BBB(b, c,a) is true.
Furthermore, these conditions are mutually exclusive.

Proof. We know that c ∈ ab if and only if c = ta + (1 − t)b for some t. We claim the five
conditions are equivalent to t = 1, t = 0, t < 0, t > 1 and 0 < t < 1 respectively. Thus it will
suffice to verify the following:

(1) BBB(a,b, c) is true if and only if c = ta + (1 − t)b for some t < 0.

(2) BBB(c,a,b) is true if and only if c = ta + (1 − t)b for some t > 1.

PROOF OF (1). The condition c = ta + (1 − t)b with t < 0 is equivalent to

b =
t

t− 1
a +

−1

t− 1
c .

The conclusion in this case follows because the map sending t to t/(t − 1) is a 1–1 corre-
spondence from the unbounded set { u ∈ F | u < 0 } to the bounded open interval
{ v ∈ F | 0 < v < 1 }.�

PROOF OF (2). The condition c = ta + (1 − t)b with t > 1 is equivalent to

a =
1

t
c +

(
1 −

1

t

)
b .

The conclusion in this case follows because the map sending t to 1/t is a 1–1 correspondence from
the unbounded set { u ∈ F | u > 1 } to the bounded open interval { v ∈ F | 0 < v < 1 }.�

Betweenness and cross ratios

Not surprisingly, there are important relationships between the concept of betweenness and the
notion of cross ratio. Here is the most basic result.

Theorem VI.21. Let F be an ordered field, and let J : F
n → FP

n be the usual projective extension
mapping. Then three collinear points a, b and c of V satisfy the order relation BBB(a, c,b) if and
only if

XR
(
J(a), J(b), J(c), L∞

)
< 0

where L∞ is the ideal point of the line L containing a, b and c.

Proof. By Theorem V.17, if c = ta + (1 − t)b then

XR
(
J(a), J(b), J(c), L∞

)
=

t− 1

t
.

This is negative if 0 < t < 1 because t− 1 < 0 < t. We claim that the cross ratio is positive if
either t < 0 or t > 1. If t > 1, then t− 1 > 0 and therefore the cross ratio is positive. Similarly,
if t < 0, then t− 1 < t < 0 implies that the cross ratio is positive.�

Affine transformations obviously preserve betweenness (see Exercise 10 below). However, if
BBB(a,b, c) in F

n and T is a projective collineation of FP
n such that the images a′, b′, c′ of
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a, b, c under T lie in (the image of) F
n, then BBB(a′,b′, c′) is not necessarily true. Specific

examples are given by projective collineations which interchange a and b, and send c to itself.

If one wants some aspect of order and betweenness which IS preserved by projective collineations,
it is natural to try something involving the cross ratio, and the preceding result may be viewed
as motivation for the following definition and theorem:

Definition. Let F be an ordered field, let V be a vector space over F, and let a, b, c, d be
collinear vectors in V . Then a and b separate c and d if one of {c,d} is between a and b but
the other is not. We shall write this as sep(a,b : c,d). It is trivial to see that sep(a,b : c,d) is
equivalent to sep(a,b : d, c) and sep(c,d : a,b) (and one can also derive several other equivalent
cross ratio statements from these).

There is a very simple and important characterization of separation in terms of cross ratios.

Theorem VI.22. Let F be an ordered field, let V be a vector space over F, and let a, b, c, d
be collinear vectors in V . Then sep(a,b : c,d) is true if and only if

(
J(a), J(b), J(c), J(d)

)
< 0 .

Proof. Suppose that sep(a,b : c,d) is true. Without loss of generality, we may assume that
BBB(a, c,b) is true but BBB(a,d,b) is false (either this holds or else the corresponding statement
with c and d interchanged is true – in the latter case, reverse the roles of the two points). Under
these conditions we have c = ta + (1 − t)b where 0 < t < 1 and d = sa + (1 − s)b where
s < 0 or s > 1. By Theorem V.17 we have

XR
(
J(a), J(b), J(c), J(d)

)
=

s(1 − t)

t(1 − s)
.

The sign of this cross ratio equals the sign of s/(1− s), and the latter is negative if either s < 0
or s > 1.�

Suppose that the cross ratio is negative. We need to show that one of s and t satisfies 0 < u < 1
and the other does not. To do this, we eliminate all the other possibilities.

Case 1. Suppose we have 0 < s, t < 1. Then all the factors of the numerator and denominator
are positive.

Case 2. Suppose neither satisfies 0 < u < 1. Then the previous argument shows that one of s
and 1 − s is positive and likewise for t and 1 − t. Therefore the formula above implies that the
cross ratio must be positive.�

We thus make the general definition in FP
n that two points A and B separate two points C

and D on AB if and only if XR(A,B,C,D) < 0. If all four of these points are ordinary, then
Theorem 22 provides a geometrical description of separation. The cases where one point is ideal
can be described using the following two special cases:

(1) sep
(
J(a), J(b) : ∞, J(c)

)
and sep(J(a), J(b) : J(c),∞) hold if and only if BBB(a, c,b) is

true (see Theorems V.12 and V.17).

(2) sep
(
J(a),∞ : J(c), J(d)

)
and sep

(
∞, J(a) : J(c), J(d)

)
hold if and only if BBB(c,a,d) is

true because

XR
(
J(a),∞ : J(c), J(d)

)
= XR

(
J(d), J(c) : ∞, J(a)

)
.
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The following observation is an immediate consequence of the definitions:

Let F be an ordered field, let A, B, C, D be distinct collinear points in FP
n,

and let T be a projective collineation of FP
n. Then sep(A,B : C,D) is true if

and only if sep
(
T (A), T (B) : T (C), T (D)

)
is true.�

A comprehensive visualization of separation for points on a real projective line may be given as
follows:

As indicated in the picture below, there is a standard 1–1 correspondence (stereographic pro-
jection) between the points of RP

1 and the points on the circle Γ in R
2 which is tangent to the

x-axis at the origin and whose center is (0, 1
2
). An ordinary point with standard affine coordinate

u is sent to the intersection of Γ with the line joining (u, 0) to (0, 1), and the point at infinity is
sent to (0, 1). It is straightforward to check that this map σ defines a 1–1 correspondence from
RP

1 to Γ.3 
 

 

Figure VI.3

With respect to this correspondence, separation has the following interpretation. If a, b ∈ RP
1,

then Γ − {σ(a), σ(b)} consists of two open arcs, and separation means that each arc contains
exactly one of the points {c, d}.

We now summarize some basic properties of separation by means of the following theorem:

Theorem VI.23. If F is an ordered field and A, B, C, D are distinct collinear points of FP
n,

then the following hold:

(a) sep(A,B : C,D) implies sep(A,B : D,C) and sep(C,D : A,B).

(b) One and only one of the relations sep(A,B : C,D), sep(B,C : D,A), or and sep(C,A : B,D)
is true.

(c) If sep(A,B : C,D) and sep(B,C : D,E) are true, then so is sep(C,D : E,A).

(d) If L is a line meeting AB, Y is a coplanar point on neither line, and X ′ is the intersection
point of PX and L for X = A, B, C, D, then sep(A,B : C,D) implies sep(A′, B′ : C ′, D′).

3If we rotate the above picture about the y-axis in R
3 we obtain a similar 1–1 correspondence between the

complex projective line CP
1 and the sphere of diameter 1 tangent to the xz-plane at the origin.
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The proof is straightforward and is left as an exercise.�

One reason for listing the preceding four properties is that they come close to providing a
complete characterization of separation.

Theorem VI.24. Let P be a Desarguian projective n-space, where n ≥ 2, and suppose that P
has an abstract notion of separation Σ(· · · , · · · || · · · , · · · ) which satisfies the four properties in
the previous theorem. Assume that some (hence every) line contains at least four points. Then
P is isomorphic to FP

n, where F is an ordered skew-field, and the ordering of F has the property
that sep(A,B : C,D) is true if and only if Σ(· · · , · · · || · · · , · · · ) is.

In principle, this result is proved on pages 239–244 of Artzy, Linear Geometry . We say “in
principle” because the result is only stated for projective planes in which Pappus’ Theorem
holds. However, the latter is not used explicitly in the argument on these pages,4 and the
restriction to planes is easily removed.

We would need only one more axiom to give a completely synthetic characterization of the real
projective plane (and similarly for higher dimensional real projective spaces). Fairly readable
formulations of the required continuity condition (as it is called) may be found in Coxeter, The
Real Projective Plane, pages 161–162, and Artzy (op. cit.), page 244.

EXERCISES

Throughout these exercises F denotes an ordered field, and the ordering is given
by the usual symbolism.

1. In the real numbers R, prove that the closed interval [a, b], consisting of all x such that
a ≤ x ≤ b, is equal to the closed segment [a; b] joining a to b as defined here, and likewise for
their open analogs (a, b) and (a; b). [Hint: If a ≤ c ≤ b and t = (b − a)/(c − a), consider
ta + (1− t)b. If c = ta+(1− t)b for 0 ≤ t ≤ 1, why does this and a ≤ b imply that a ≤ c ≤ b?]

Definition. A subset K ⊂ F
n is convex if x and y in K imply that the closed

segment [x;y] is contained in K. — In physical terms for, say, R
2 or R

3, this
means that K has “no dents or holes.”

2. Prove that the following subsets of F are convex for an arbitrary b ∈ F:

(i) The set { x ∈ F | x > b}.

(ii) The set { x ∈ F | x < b}.

(iii) The set { x ∈ F | x ≥ b}.

(iv) The set { x ∈ F | x ≤ b}.

3. Prove that the intersection of an arbitrary family of convex subsets of F
n is also convex.

4. Let f : F
n → F be a linear function of the form f(x) =

∑
i ai xi − b.

4An explicit recognition that Pappus’ Theorem is unnecessary appears in Forder, Foundations of Euclidean

Geometry, pp. 196–197 and 203–206.
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(a) Prove that for all t ∈ F we have f
(
tx + (1 − t)y ) = t · f(x) + (1 − t)f(y).

(b) Prove that if K ⊂ F
n is convex, then so is its image f [K].

(c) Prove that if C ⊂ F is convex, then so is its inverse image f−1[C].

5. Let f be as in Exercise 4. Then the subsets of F
n on which f is positive and negative are

called the (two) sides of the hyperplane Hf defined by f or the (two) half-spaces determined by
the hyperplane Hf . Prove that each half-space is (nonempty and) convex, and if we have points
x and y in F

n such that x lies on one of the half-spaces and y lies on the other, then the closed
segment [x;y] contains a point of the hyperplane Hf defined by the equation f(z) = 0. —
This statement is called the hyperplane separation property for F

n. 
 

 

Figure VI.4

Also, explain why the hyperplane and its two sides are three pairwise disjoint subsets whose
union is all of F

n.

6. Formulate and prove a similar result to Exercise 5 for the set of all points in a k-plane
M ⊂ F

n which are not in a (k − 1)-plane Q ⊂M .

7. Suppose that x, y, z are noncollinear points in F
2. Define the classical triangle ∆cxyz

to be the union of the closed segments [x;y], [x; z], and [y; z]. Prove the Theorem of Pasch:5

A line L containing a point w in an open side (x;y) of ∆c xyz either passes through z or else
meets one of the other open sides (x; z) or (x; z). [Hint: Explain why x and y are on opposite
sides of the L through w. What can be said about z if it does not lie on this line?] 

 

 

Figure VI.5

5Moritz Pasch (1843–1930) is mainly known for his work on the foundations of geometry, and especially for

recognizing the logical deficiencies in Euclid’s Elements and developing logically rigorous methods for addressing

such issues. The theorem in the exercise is one example of a geometrical result that is tacitly assumed – but not

proved — in the Elements.
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7. If x, y, z, w are distinct points in F
2 such that no three are noncollinear, then the classical

quadrilateral �
c xyzw is the set

[x;y] ∪ [y; z] ∪ [z;w] ∪ [w;x] .

Note that the definition depends upon the ordering of the four points. The figure is called a
convex quadrilateral if the following conditions hold:

x and y lie on the same side of zw .
y and z lie on the same side of wx .
z and w lie on the same side of xy .
w and x lie on the same side of yz .

The diagonals of a classical quadrilateral �
c xyzw are the segments [x; z] and [y;w]. Prove that

the diagonals of a convex quadrilateral have a point in common. Why must this point lie on
(x; z) ∩ (y;w)?

 

 

Figure VI.6

8. Give an explicit formula for the map defined by Figure VI.3 and the accompanying discus-
sion.

9. Prove Theorem 24.

10. Suppose that x, y, z are points in F
n such that BBB(x,y, z) is true and T ∈ Aff(Fn). Prove

that BBB
(
T (x), T (y), T (z)

)
is also true.

11. In the notation of Exercise 5, let y1, · · · ,yn be an affine basis for the hyperplane H under
consideration, and let y0 6∈ H. Prove that x ∈ F

n lies on the same side of H as y0 if the 0th

barycentric coordinate of x with respect to y0, y1, · · · ,yn (an affine basis for F
n) is positive.

What is the condition for x and y0 to lie on opposite sides?

12. Let a, b, c and d be four points in F
2 such that no three are collinear. Prove that

a, b, bfc and d (in that order) determine the vertices of a convex quadrilateral if and only if
the barycentric coordinate expansion c = xa + yb + zd (with x + y + z = 1) satisfies x > 0,
z > 0 and y < 0.


