Partial solutions for Quiz 2

1. We want to find a reasonably small value of c such that $101c \equiv 1 \mod 107$; more precisely we would like to find some choice of c which is a one or two digit positive integer. We can do this as follows:

 $101 \equiv -6 \mod 107$ $108 = 107 + 1 = 6 \times 18$ $101 \cdot 18 \equiv -6 \cdot 18 \equiv -1 \mod 107$ Therefore $c \equiv -18 \mod 107$ But $89 = 101 - 18 \equiv -18 \mod 107$ Therefore $c \equiv 89 \mod 107$

2. We need to solve the simultaneous congruences $x \equiv P \mod 101$ and $x \equiv Q \mod 107$. We can write x = P + 101n, where we wish to describe n more precisely. We also have that $x \equiv Q \mod 107$, and this yields a second relationship

$$x = P + 101n \equiv Q \mod 107$$

and we can now use the first problem to conclude that $89(Q - P) \equiv 89 \cdot 101n \equiv n \mod 107$. This means that $n \equiv 89(Q - P) \mod 107$. This yields one form of the final answer:

$$x \equiv P + (101 \cdot 89) \cdot (Q - P) + 10807m$$

Here *m* is an arbitrary integer. We can now replace $P + (101 \cdot 89) \cdot (Q - P)$ by an integer *R* which is congruent to it mod 10807 and lies between 0 and 10806, so that $x \equiv R \mod 10807$.