Partial solutions for Quiz 2

1. We want to find a reasonably small value of c such that $101 c \equiv 1 \bmod 107$; more precisely we would like to find some choice of c which is a one or two digit positive integer. We can do this as follows:

$$
101 \equiv-6 \bmod 107
$$

$$
108=107+1=6 \times 18
$$

$101 \cdot 18 \equiv \equiv-6 \cdot 18 \equiv-1 \bmod 107$
Therefore $c \equiv-18 \bmod 107$
But $89=101-18 \equiv-18 \bmod 107$
Therefore $c \equiv 89 \bmod 107 ■$
2. We need to solve the simultaneous congruences $x \equiv P \bmod 101$ and $x \equiv Q \bmod 107$. We can write $x=P+101 n$, where we wish to describe n more precisely. We also have that $x \equiv Q \bmod 107$, and this yields a second relationship

$$
x=P+101 n \equiv Q \bmod 107
$$

and we can now use the first problem to conclude that $89(Q-P) \equiv 89 \cdot 101 n \equiv n \bmod 107$. This means that $n \equiv 89(Q-P) \bmod 107$. This yields one form of the final answer:

$$
x \equiv P+(101 \cdot 89) \cdot(Q-P)+10807 m
$$

Here m is an arbitrary integer. We can now replace $P+(101 \cdot 89) \cdot(Q-P)$ by an integer R which is congruent to it mod 10807 and lies between 0 and 10806, so that $x \equiv R \bmod 10807$.

