Partial solutions for Quiz 3

1. We want to find $a+b i$ so that

$$
18+26 i=(a+b i)^{3}=\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}\right) i
$$

where a and b are positive integers. The first step is to equate the real and imaginary parts of the first and last expressions:

$$
18=a\left(a^{2}-3 b^{2}\right) \quad 26=b\left(3 a^{2}-b^{2}\right)
$$

It follows that a divides 18 and b divides 26 . Thus the possible values for a are $1,2,3,6,9,18$ and $b=1,2,13,26$. One can check directly that $a=3$ and $b=1$ is the only pair of choices which will solve the given two equations. To summarize, we must have $a+b i=3+i$.
2. Let's rewrite the equation as

$$
\frac{1}{z}=\frac{1}{x}+\frac{1}{y}
$$

where we have $c=c_{1}+c_{2} i$ for each choice of $c=x, y, z$. Then we have

$$
\frac{1}{x}=\frac{x_{1}-x_{2} i}{x_{1}^{2}+x_{2}^{2}}, \quad \frac{1}{y}=\frac{y_{1}-y_{2} i}{y_{1}^{2}+y_{2}^{2}}
$$

and we can add these to obtain $w=1 / z$. The final answer is then

$$
z=\frac{w_{1}-w_{2} i}{w_{1}^{2}+w_{2}^{2}}
$$

where $w=w_{1}+w_{2} i$ in keeping with our established notation. Of course, one can write a program for solving this equation with any choice of x and $y . ■$

Followup question: Suppose that the real and imaginary parts of x and y are nonnegative. Why is the same true for z ?

Answer: Consider the formulas for $1 / x$ and $1 / y$. In these formulas the real parts are nonnegative and the imaginary parts are nonpositive. If we add these up to get w, then the real part of w is nonnegative and the imaginary part is nonpositive. By the final formula, the real part of z is a positive multiple of the real part of w (which is nonnegative) and the imaginary part of z is a negative multiple of the imaginary part of \boldsymbol{w} (which is nonpositive). Therefore both the real and imaginary parts of z must be nonnegative.

