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1. These numbers are still small enough that we can use ad hoc methods to find the answers.

(a) We have that 101 ≡ 4 mod 97, so we want to find c such that 4c ≡ 1 mod 97. The idea is
to take some multiple of 4 which is close to 97. But 96 = 32× 4, so 32× 4 ≡ −1 mod 97, and this
means that (−32)× 4 ≡ 1 mod 97. Since −32 ≡ 97− 32 = 65, it follows that c = 65.

(b) We have that 101 ≡ 2 mod 99, so we want to find c such that 2c ≡ 1 mod 99. In this case
we have 2× 50 = 100 ≡ 1 mod 99. Therefore c = 50.

(c) We now have that 101 ≡ −2 mod 103. Since 2× 52 = 104 ≡ 1 mod 103 it follows that we
must have c ≡ −52 mod 103, and hence c = 103− 52 = 49.

(d) We have that 101 ≡ −4 mod 105. Since 4 × 26 = 104 ≡ −1 mod 105 it follows that we
must have c ≡ −26 mod 105, and hence c = 105− 26 = 79.

2. (a) We know that (a+ b
√
p) · (a− b

√
p) = a2− pb2 = N(a+ b

√
p). If this is zero then as

in history06b.pdf we know that a = b = 0 by the irrationality of
√
p. Furthermore, we also have

N(a+ b
√
p) 6= 0 for the same reason. If we multiply a+ b

√
p by (a− b

√
p)/N(a+ b

√
p), the product

is equal to 1, and therefore it follows that (a− b
√
p)/N(a + b

√
p) is the reciprocal of a + b

√
p .

(b) The equation u2 = v2p− 1 is equivalent to the norm equality N(u+ v
√
p) = −1. Therefore

if a + b
√
p = (u + v

√
p)2 we have

N(a + b
√
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(
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√
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)
= N(u + v

√
p)2 = (−1)2 = 1

which is equivalent to a2 = b2p + 1.
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