SOLUTIONS TO EXERCISES FROM math153exercises06X.pdf

1. These numbers are still small enough that we can use *ad hoc* methods to find the answers.

(a) We have that $101 \equiv 4 \mod 97$, so we want to find c such that $4c \equiv 1 \mod 97$. The idea is to take some multiple of 4 which is close to 97. But $96 = 32 \times 4$, so $32 \times 4 \equiv -1 \mod 97$, and this means that $(-32) \times 4 \equiv 1 \mod 97$. Since $-32 \equiv 97 - 32 = 65$, it follows that c = 65.

(b) We have that $101 \equiv 2 \mod 99$, so we want to find c such that $2c \equiv 1 \mod 99$. In this case we have $2 \times 50 = 100 \equiv 1 \mod 99$. Therefore c = 50.

(c) We now have that $101 \equiv -2 \mod 103$. Since $2 \times 52 = 104 \equiv 1 \mod 103$ it follows that we must have $c \equiv -52 \mod 103$, and hence c = 103 - 52 = 49.

(d) We have that $101 \equiv -4 \mod 105$. Since $4 \times 26 = 104 \equiv -1 \mod 105$ it follows that we must have $c \equiv -26 \mod 105$, and hence c = 105 - 26 = 79.

2. (a) We know that $(a + b\sqrt{p}) \cdot (a - b\sqrt{p}) = a^2 - pb^2 = N(a + b\sqrt{p})$. If this is zero then as in history06b.pdf we know that a = b = 0 by the irrationality of \sqrt{p} . Furthermore, we also have $N(a + b\sqrt{p}) \neq 0$ for the same reason. If we multiply $a + b\sqrt{p}$ by $(a - b\sqrt{p})/N(a + b\sqrt{p})$, the product is equal to 1, and therefore it follows that $(a - b\sqrt{p})/N(a + b\sqrt{p})$ is the reciprocal of $a + b\sqrt{p}$.

(b) The equation $u^2 = v^2 p - 1$ is equivalent to the norm equality $N(u + v\sqrt{p}) = -1$. Therefore if $a + b\sqrt{p} = (u + v\sqrt{p})^2$ we have

$$N(a + b\sqrt{p}) = N\left((u + v\sqrt{p})^2\right) = N(u + v\sqrt{p})^2 = (-1)^2 = 1$$

which is equivalent to $a^2 = b^2 p + 1$.