Math 153
Spring 2020
R. Schultz

SOLUTIONS TO EXERCISES FROM math153exercises06X.pdf

1. These numbers are still small enough that we can use ad hoc methods to find the answers.
(a) We have that $101 \equiv 4 \bmod 97$, so we want to find c such that $4 c \equiv 1 \bmod 97$. The idea is to take some multiple of 4 which is close to 97 . But $96=32 \times 4$, so $32 \times 4 \equiv-1 \bmod 97$, and this means that $(-32) \times 4 \equiv 1 \bmod 97$. Since $-32 \equiv 97-32=65$, it follows that $c=65$. .
(b) We have that $101 \equiv 2 \bmod 99$, so we want to find c such that $2 c \equiv 1 \bmod 99$. In this case we have $2 \times 50=100 \equiv 1 \bmod 99$. Therefore $c=50$. .
(c) We now have that $101 \equiv-2 \bmod 103$. Since $2 \times 52=104 \equiv 1 \bmod 103$ it follows that we must have $c \equiv-52 \bmod 103$, and hence $c=103-52=49 . ■$
(d) We have that $101 \equiv-4 \bmod 105$. Since $4 \times 26=104 \equiv-1 \bmod 105$ it follows that we must have $c \equiv-26 \bmod 105$, and hence $c=105-26=79 .$.
2. (a) We know that $(a+b \sqrt{p}) \cdot(a-b \sqrt{p})=a^{2}-p b^{2}=N(a+b \sqrt{p})$. If this is zero then as in history06b.pdf we know that $a=b=0$ by the irrationality of \sqrt{p}. Furthermore, we also have $N(a+b \sqrt{p}) \neq 0$ for the same reason. If we multiply $a+b \sqrt{p}$ by $(a-b \sqrt{p}) / N(a+b \sqrt{p})$, the product is equal to 1 , and therefore it follows that $(a-b \sqrt{p}) / N(a+b \sqrt{p})$ is the reciprocal of $a+b \sqrt{p}$.■
(b) The equation $u^{2}=v^{2} p-1$ is equivalent to the norm equality $N(u+v \sqrt{p})=-1$. Therefore if $a+b \sqrt{p}=(u+v \sqrt{p})^{2}$ we have

$$
N(a+b \sqrt{p})=N\left((u+v \sqrt{p})^{2}\right)=N(u+v \sqrt{p})^{2}=(-1)^{2}=1
$$

which is equivalent to $a^{2}=b^{2} p+1$.

