SOLUTIONS TO EXERCISES FROM aabUpdate09.153.s19.pdf

1. (a) If p is a prime and 0 < k < p explain why the binomial coefficient

$$\binom{p}{k} = \frac{p!}{(k!(p-k)!)}$$

is divisible by p. [Hint: Look for factors of p in the numerator and denominator.]

SOLUTION.

Since $p!/(p-k)! = (p-k+1) \cdot ... (p-1)p$ and the binomial coefficient is an integer, we know that k! divides this number with zero remainder. Furthermore, if we write p!/(p-k)! = qp where q is the product of the first (k-1) factors of the product expression, then q is relatively prime to p because all its prime factors are strictly less than p, and similarly for k!. By Unique Factorization this means that k! must divide q with zero remainder and hence the binomial coefficient has the form

$$p \cdot \frac{q}{k!}$$

which means it is divisible by $p.\blacksquare$

(b) Suppose that a and b are integers such that $a \equiv b \mod(p)$. Show that $a^p \equiv b^p \mod(p^2)$. [Hint: Write b = a + kp.]

SOLUTION.

The Binomial Theorem implies that

$$b^{p} = (a + kp)^{p} = \sum_{r=0}^{p} {p \choose r} a^{p-r} (kp)^{r}$$

so we need to show that for each $r \geq 1$ the r^{th} term in the right hand summation is divisible by p^2 .

If $1 \le r < p$ this follows because the binomial coefficient and $(kp)^2$ are each divisible by p and hence their product is divisible by p^2 . In the remaining case r = p the summand is $(kp)^p$, and this is divisible by p^2 because $p \ge 2$.

2. (a) Suppose that n > 1 is an integer and r is another integer such that $r \not\equiv 0, 1 \mod(n)$ and $r^2 \equiv r \mod(n)$. Prove that n is not prime. [Hint: Use the fact that if n and r are relatively prime then there is some integer q such that $qr \equiv 1 \mod(n)$.]

SOLUTION.

Follow the hint. Suppose to the contrary that n is prime. Since $r \not\equiv 0 \mod(n)$ this means that there is some integer q such that $qr \equiv 1 \mod(n)$. If we multiply both sides of the congruence in the first sentence in the problem by q, we obtain the congruences

$$1 \equiv qr \equiv qr^2 \equiv 1 \cdot r \mod(n)$$

which contradicts our assumption that $r \not\equiv 0, 1 \mod(n)$. The source of the problem is our assumption that n is prime, and therefore we conclude that n cannot be a prime number.

Simple example. Take n = 6 and r = 3, so that $9 = 3^2 \equiv 3 \mod(6)$.

(b) Give an example of integers a and n such that $a^n \not\equiv a \mod(n)$. Note that by the Little Fermat Theorem n cannot be a prime number.

SOLUTION.

Let's see what happens if n=6. The congruence clearly holds if a=0,1, so let's try a=2. In this case $2^6=64 \equiv 4 \mod(6)$.

3. (a) Let n > 1 be an integer. Explain why $k^2 \equiv (n - k)^2 \mod(n)$ for all k.

SOLUTION.

By the Binomial Theorem $(n-k)^2 = n^2 - 2nk + k^2$, which is congruent to $k^2 \mod n$.

(b) Find all integers a such that $0 \le a \le 10$ and $a \equiv b^2 \mod(11)$ for some integer b. [Hint: Part (a) may help reduce the amount of calculation needed.]

SOLUTION.

We need only find the classes of $b^2 \mod(11)$ where $0 \le b \le 10$, and by the first part we actually only need to do this for $0 \le b \le 5$ since the latter implies $6 \le (11-b) \le 11$. — Clearly the classes of $0^2, 1^2, 2^2, 3^2$ are $0, 1, 4, 9 \mod 11$, and similarly we have $5 \equiv 4^2 \mod(11)$ and $3 \equiv 5^2 \mod(11)$. Therefore the possibilities for b are $0, 1, 3, 4, 5, 9 \mod 11$.

(c) Find all integers a such that $0 \le a \le 12$ and $a \equiv b^2 \mod(13)$ for some integer b.

SOLUTION.

In this case we need only find the classes of $b^2 \mod(13)$ where $0 \le b \le 6$. — Clearly the classes of $0^2, 1^2, 2^2, 3^2$ are $0, 1, 4, 9 \mod 13$, and similarly we have $3 \equiv 4^2 \mod(11)$, and $12 \equiv 5^2 \mod(13)$ $10 \equiv 6^2 \mod(11)$. Therefore the possibilities for b are $0, 1, 3, 4, 9, 10, 12 \mod 13$.

The next two problems involve some numerical issues which arise from the Cubic Formula in Chapter 9 of the course notes.

4. The Cubic Formula shows that one root of the polynomial $x^3 - 3x + 1 = 0$ has the form

$$\sqrt[3]{\cos(2\pi/3) + i\sin(2\pi/3)} + \sqrt[3]{\cos(2\pi/3) - i\sin(2\pi/3)}$$
.

Express this as a real number; your answer should have the form $K\cos\theta$ for explicit values of K and θ . [Hint: $e^{i\alpha} = \cos\alpha + i\sin\alpha$.]

SOLUTION.

The polar form of a complex number $re^{i\alpha}$ is convenient for taking $n^{\rm th}$ roots. In particular, one cube root of this number is given by $r^{1/3}e^{i\alpha/3}$. Therefore the sum of the two cube roots simplifies to

$$\cos(2\pi/9) + i\sin(2\pi/9) + \cos(2\pi/9) - i\sin(2\pi/9)$$

which of course is equal to $2\cos(2\pi/9)$.

5. The Cubic Formula shows that one root of the polynomial $x^3 + x^2 - 2 = 0$ has the form

$$\frac{1}{3} \left(\sqrt[3]{26 + 15\sqrt{3}} \ + \ \sqrt[3]{26 - 15\sqrt{3}} \ - \ 1 \right) \ .$$

Using Bombelli's methods, show that this expression is a positive integer (in fact, an extremely familiar value). The crucial step is to express the expressions under the cube root signs as $a \pm b\sqrt{3}$ for two single digit integers a and b.

SOLUTION.

Follow the hint in the final sentence and try to write $26 + 15\sqrt{3} = (a + b\sqrt{3})^3$ for suitable a and b. Expanding the right hand side yields

$$a^3 + 3a^2b\sqrt{3} + 3a(3b^2) + 9b^3\sqrt{3}$$

and if we equate coefficients we obtain the equations $a^3 + 9b^2 = 26$ and $3a^2b + 9b^3 = 15$.

Generally systems of equations like the preceding do not yield much information, but the final sentence helps because it asks for solutions where a and b are single digit integers. Let's start by looking for solutions where both integers are positive. Then the second equation implies that b must be equal to 1, which in turn implies that a must be equal to 2. We should now check that $26 \pm 15\sqrt{3} = (2 \pm \sqrt{3})^3$, but the latter are routine exercises.

Finally, if we substitute this into the Cubic Formula expression we see that the latter simplifies to

$$\frac{1}{3}\left((2+\sqrt{3}) + (2-\sqrt{3}) - 1\right)$$

which in turn simplifies to 1. To check the accuracy of our calculations we should verify that 1 is a root of the original cubic polynomial, but this is very easy to do.■