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1. (a) If p is a prime and 0 < k < p explain why the binomial coefficient

(

p

k

)

=
p!

(k!(p − k)!

is divisible by p. [Hint: Look for factors of p in the numerator and denominator.]

SOLUTION.

Since p!/(p− k)! = (p− k+1) · ...(p− 1)p and the binomial coefficient is an integer, we know that
k! divides this number with zero remainder. Furthermore, if we write p!/(p − k)! = qp where q
is the product of the first (k − 1) factors of the product expression, then q is relatively prime to p
because all its prime factors are strictly less than p, and similarly for k!. By Unique Factorization
this means that k! must divide q with zero remainder and hence the binomial coefficient has the
form

p · q

k!

which means itis divisible by p.

(b) Suppose that a and b are integers such that a ≡ b mod(p). Show that ap ≡ bp mod(p2).
[Hint: : Write b = a+ kp.]

SOLUTION.

The Binomial Theorem implies that

bp = (a+ kp)p =

p
∑

r=0

(

p

r

)

ap−r (kp)r

so we need to show that for each r ≥ 1 the rth term in the right hand summation is divisible by p2.

If 1 ≤ r < p this follows because the binomial coefficient and (kp)2 are each divisible by p and
hence their product is divisible by p2. In the remaining case r = p the summand is (kp)p, and this
is divisible by p2 because p ≥ 2.

2. (a) Suppose that n > 1 is an integer and r is another integer such that r 6≡ 0, 1 mod(n) and
r2 ≡ r mod(n). Prove that n is not prime. [Hint: Use the fact that if n and r are relatively prime
then there is some integer q such that qr ≡ 1 mod(n).]

SOLUTION.

Follow the hint. Suppose to the contrary that n is prime. Since r 6≡ 0 mod(n) this means that
there is some integer q such that qr ≡ 1 mod(n). If we multiply both sides of the congruence in
the first sentence in the problem by q, we obtain the congruences

1 ≡ qr ≡ qr2 ≡ 1 · r mod(n)



which contradicts our assumption that r 6≡ 0, 1 mod(n). The source of the problem is our assump-
tion that n is prime, and therefore we conclude that n cannot be a prime number.

Simple example. Take n = 6 and r = 3, so that 9 = 32 ≡ 3 mod(6).

(b) Give an example of integers a and n such that an 6≡ a mod(n). Note that by the Little
Fermat Theorem n cannot be a prime number.

SOLUTION.

Let’s see what happens if n = 6. The congruence clearly holds if a = 0, 1, so let’s try a = 2. In this
case 26 = 64 ≡ 4 mod(6).

3. (a) Let n > 1 be an integer. Explain why k2 ≡ (n− k)2 mod(n) for all k.

SOLUTION.

By the Binomial Theorem (n− k)2 = n2 − 2nk + k2, which is congruent to k2 mod n.

(b) Find all integers a such that 0 ≤ a ≤ 10 and a ≡ b2 mod(11) for some integer b. [Hint:
Part (a) may help reduce the amount of calculation needed.]

SOLUTION.

We need only find the classes of b2 mod(11) where 0 ≤ b ≤ 10, and by the first part we actually
only need to do this for 0 ≤ b ≤ 5 since the latter implies 6 ≤ (11− b) ≤ 11. — Clearly the classes
of 02, 12, 22, 32 are 0, 1, 4, 9 mod 11, and similarly we have 5 ≡ 42 mod(11) and 3 ≡ 52 mod(11).
Therefore the possibilities for b are 0, 1, 3, 4, 5, 9 mod 11.

(c) Find all integers a such that 0 ≤ a ≤ 12 and a ≡ b2 mod(13) for some integer b.

SOLUTION.

In this case we need only find the classes of b2 mod(13) where 0 ≤ b ≤ 6. — Clearly the classes
of 02, 12, 22, 32 are 0, 1, 4, 9 mod 13, and similarly we have 3 ≡ 42 mod(11), and 12 ≡ 52 mod(13)
10 ≡ 62 mod(11). Therefore the possibilities for b are 0, 1, 3, 4, 9, 10, 12 mod 13.

The next two problems involve some numerical issues which arise from the Cubic Formula in
Chapter 9 of the course notes.

4. The Cubic Formula shows that one root of the polynomial x3 − 3x+ 1 = 0 has the form

3

√

cos(2π/3) + i sin(2π/3) + 3

√

cos(2π/3) − i sin(2π/3) .

Express this as a real number; your answer should have the form K cos θ for explicit values of K
and θ. [Hint: eiα = cosα+ i sinα.]

SOLUTION.

The polar form of a complex number reiα is convenient for taking nth roots. In particular, one
cube root of this number is given by r1/3eiα/3. Therefore the sum of the two cube roots simplifies
to

cos(2π/9) + i sin(2π/9) + cos(2π/9) − i sin(2π/9)

which of course is equal to 2 cos(2π/9).



5. The Cubic Formula shows that one root of the polynomial x3 + x2 − 2 = 0 has the form

1

3

(

3

√

26 + 15
√
3 +

3

√

26− 15
√
3 − 1

)

.

Using Bombelli’s methods, show that this expression is a positive integer (in fact, an extremely
familiar value). The crucial step is to express the expressions under the cube root signs as a± b

√
3

for two single digit integers a and b.

SOLUTION.

Follow the hint in the final sentence and try to write 26 + 15
√
3 =

(

a+ b
√
3
)3

for suitable a and b.
Expanding the right hand side yields

a3 + 3a2b
√
3 + 3a(3b2) + 9b3

√
3

and if we equate coefficients we obtain the equations a3 + 9b2 = 26 and 3a2b+ 9b3 = 15.

Generally systems of equations like the preceding do not yield much information, but the final
sentence helps because it asks for solutions where a and b are single digit integers. Let’s start by
looking for solutions where both integers are positive. Then the second equation implies that b
must be equal to 1, which in turn implies that a must be equal to 2. We should now check that

26± 15
√
3 =

(

2±
√
3
)3

, but the latter are routine exercises.

Finally, if we substitute this into the Cubic Formula expression we see that the latter simplifies
to

1

3

(

(2 +
√
3) + (2−

√
3) − 1

)

which in turn simplifies to 1. To check the accuracy of our calculations we should verify that 1 is
a root of the original cubic polynomial, but this is very easy to do.


