1.A. Egyptian fractions with small numerators

In Unit 1 we mentioned P. Erdés’s question about expressing a fraction of the form 4/n, where
n is odd, as a sum of at most three unit fractions with different denominators. The purpose of this
writeup is to put this result into perspective by making three closely related observations:

FACT 1. Ifn is odd, then 2/n can be expressed as a sum of two unit fractions with different
denominators.

FACT II. If n is not divisible by 3, then 3/n can be expressed as a sum of at most three unit
fractions with distinct denominators. Furthermore. there are fractions of this type than cannot be
expressed as a sum of two unit fractions with distinct denominators.

FACT II1. Ifn is odd, then 4/n can be expressed as a sum of at most four unit fractions with
distinct denominators. Furthermore. there are fractions of this type than cannot be expressed as a
sum of two unit fractions with distinct denominators.

We shall prove these results in the order stated.
Fractions with numerators equal to 2

Suppose that the numerator is 2. If the denominator is even then we have
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so this case is not particularly interesting. This is why we assume that the denominator is odd.

Denote the latter by 2r + 1. If we apply the Greedy Algorithm we see that r}r—l is the largest unit
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TR But now we have

fraction <
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2r+1 r+1 (r+1)(2r+1)

and if we add % to both sides we obtain the an expression for %ﬂ as a sum of two unit fractions.
To complete the proof of Fact I when the denominantor is 2, we need to show that the denominators
are distinct; i.e., we need to check that

r+1 # 2r+1)-(r+1).

In fact, since 2r41 > 3 the right hand side is at least 3 times the left hand side, so the denominators
are clearly distinct as required.m

Fractions with numerators equal to 3

As in the previous discussion, we might as well assume that the denominator is not divisible
by 3. There are two cases depending upon whether the denominator has the form 3r + 1 for some
r > 1 or 3r + 2 for some r > 0.

Suppose first that the denominator has the form 3r 4+ 2 for some r > 0. In this case we can
imitate the previous argument to show that
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and as before this yields an Egyptian fraction expansion of ﬁ if and only if the denominators

r+1and (r+1) - (3r + 2) are distinct. This follows because 3r + 2 > 2.

Suppose now that the denominator has the form 3r + 1 for some r > 1. In this case the same
sort of calculation yields
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and now there are two cases depending upon whether the expression (r + 1) - (37 4 1) is even or
odd. Easy calculations show that the product is even if r is odd and odd if r is even.

Both cases will be easier to handle if we first show that
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for all » > 1. Simple manipulation shows that the latter is equivalent to the inequality
(r+1)@Br+1) > 2(r+1)
and the latter is clearly true since r >1=3r+1>4 > 2.
Suppose now that » = 2s — 1 is odd (since r > 1 we must have s > 1). Then we have
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(r+1)Br+1)  (25)(6s—2)  s(6s—2)

and by the preceding inequality we know that this is less than 1/r 4+ 1. Therefore we have the
identity
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where the two summands on the right are distince by the remarks of the previous paragraph.
Therefore if r is odd there is an Egyptian fraction expansion of %H as a sum of two unit fractions
with different denominators.

Suppose now that r is even, so that r = 2s for some s > 2. Then by the preceding calculations
we may write
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(2s+1)(6s+1)  12s2+8s+1  6s2+4s+1 + (652 +4s + 1) (1252 + 8s + 1)
and therefore our original fraction ==— will be a sum of three unit fractions if all the denominators

3r+1
are distinct. By our results on expressing %ﬂ as a sum of two unit fractions, we know that the

denominators 6s2 +4s+1 and (652 +4s+1) (1252 +8s+ 1) are distinct. To finish work on this case
we need to show that neither of these is equal to r + 1. But the previously established inequality
shows that
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r+1 (2s+1)(6s+1) 652 +4s+1 (652 +4s +1) (1252 +8s + 1)

and thus the unit fraction 1/r+1 is greater than either of the other two summands in the expansion

of 37,?;1. This means that the latter has been expressed as a sum of three distinct unit fractions as

required.




To conclude the discussion of the cases where the denominator is equal to 3, we need to show

that some fractions of the form Til cannot be written as a sum of two unit fractions with distinct
denominators. Suppose that r = 2 so that the fraction in question is % If we can write
31,1
7T a b

where a # b, then either a > b or vice versa. We shall assume a < b; the other case follows by
reversing the roles of a and b. We then have

1 n 1 - 1 n r 3 o
a a a b 7 a
which we can rewrite in the form 5 3 1
a 7 a

and since a is an integer the preceding inequalities imply
3 < a< 4.

The proof that % does not have an Egyptian fraction expansion with two terms thus reduces to the

following computations:
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Since neither term on the right hand side is a unit fraction, the assertion regarding expansions of
% follows immediately.n

Fractions with numerators equal to 4

Once again, we might as well assume the denominator is odd. If it is divisible by 4 then 4/4s
is a unit fraction, and if it has the form 4r + 2, then
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and consequently it has an Egyptian fraction expansion as a sum of two distinct unit fractions.

Once again there are two cases depending upon whether the denominator has the form 4r 4 1
or 4r + 3; since we are working with fractions in the unit interval we must have » > 1. If the
denominator has the form 47 + 1, then we may imitate the previous construction to write
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4r +3 r+1 (r+1)4r+3)

and as before this yields an Egyptian fraction expansion of ﬁ if and only if the denominators

r+1and (r+ 1) - (4r + 3) are distinct. This follows because 4r + 3 > 3.

Continuing as in the previous cases we may write
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There are two cases depending upon whether 3 divides the denominator. Suppose it does. Then the
equation displayed above will define an Egyptian fraction expansion as a sum of two unit fractions
if and only if the right hand side is not equal to 1/r + 1. However, since 4r + 1 > 5 we have

1 3 3
> >
r+1 5(r+1) — (r+1)4r+1)

and this proves the desired inequality. Now the same inequality also holds regardless of whether 3
divides (r + 1) (4r + 1). In the case where 3 does not divide this number, the fraction

3
(r+1)(4r+1)

has an Egyptian fraction expansion with three distinct terms. Now the fraction itself is less than
1/r + 1, and therefore we see that

4 1 n 3
dr+1 r+1 (r+1)(4r+1)

is a sum of 1/r+1 with three other unit fractions such that (z) the three unit fractions are distinct,
(7i) each is strictly less than the term 1/r+ 1. It follows that the right hand side yields an Egyptian
fraction expansion of 4/4r + 1 with four distinct terms.

To conclude the discussion of this case, we need to show that some fractions of the form ﬁ
cannot be written as a sum of two unit fractions with distinct denominators. Suppose that r = 1
so that the fraction in question is %. In the spirit of the previous discussion, suppose that we have
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where a > b; as before these equations and b > 0 imply
2 > 1 >
a ) a

and since a is an integer the only possibility is a = 2. The proof that % does not have an Egyptian
fraction expansion with two terms thus reduces to the following computation:
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Since the term on the right hand side is not a unit fraction, the assertion regarding expansions of
% follows immediately.m

Note that similar considerations show that % does not have an Egyptian fraction expansion
with two distinct terms. On the other hand, we have
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Neaio

Here is a question that should be easy to answer:

What is the smallest integer of the form 4r+1 > 9 such that 4/4r+1 has an Egyptian fraction
expansion with two distinct terms?

Remark. The question of Erdds and Straus is whether there are any examples for which one
actually needs four terms. As indicated in the notes, the answer is not known.
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Biographical reference

As indicated in the main notes for this unit, Paul Erdés was a brilliant and highly productive,
but unquestionably eccentric, mathematician who lived out of a suitcase for most of his life, and
not surprisingly the story of his life is extremely unusual and interesting. Here is a reference to an
engaging, accessible biography:

P. Hoffman, The Man Who Loved Only Numbers: The Story of Paul Erdés and the Search
for Mathematical Truth. Hyperion, New York, 1998. ISBN: 0-786-86362-5

Erdos numbers

Erdés wrote well over 1500 mathematical papers, which might be the largest number for any
recent mathematician. Two decades before the appearance of Six Degrees of Separation in popular
culture, some mathematicians introduced a similar tongue-in-cheek notion of the Erdés number for
a person P, which was defined to be the length k of the shortest chain

(Erd6s, Namey), --- (Nameg_1, P)

such that the two names in each pair were coauthors of a mathematical paper; if no such chain
exists then the Erdés number is said to be undefined.

Example. The following chain corresponds to an Erdés number of 3:

(P. Erdés, F. Herzog)
(F. Herzog, K. H. Dovermann)
(K. H. Dovermann, R. Schultz)

Here are two online references for further information; the first is general and the second is the
website for a project devoted to computing these numbers.

http://en.wikipedia.org/wiki/Erd%C5%91s number
http://www.oakland/edu/enp

It turns out that if the Erdés number is defined, it is relatively small, a fact which fits nicely
with the premise of Six Degrees of Separation (however, this does not necessarily imply anything
about the validity of the premise). In particular, in all known instances the Erdés number is defined
it is at most 15, and the average value is around 5.



