Vector proofs of elementary results in geometry

Our goal is to prove the following classical result in Euclidean geometry:

THEOREM. Suppose that $\angle ACB$ in the coordinate plane is inscribed in a semicircle; in other words, if X is the midpoint of the segment [AB] then all three points A, B, C are equidistant from X. Then $\angle ACB$ is a right angle.

See the file semicircle.pdf for a drawing.

Proof. We shall view the points in the coordinate plane as vectors and relabel them as \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{x} . Since \mathbf{x} is the midpoint of \mathbf{a} and \mathbf{b} it follows that $\mathbf{a} - \mathbf{x} = -(\mathbf{b} - \mathbf{x})$. Let

$$r = |\mathbf{a} - \mathbf{x}| = |\mathbf{b} - \mathbf{x}| = |\mathbf{c} - \mathbf{x}|$$
.

In vector language, the conclusion of the theorem is that $\mathbf{a} - \mathbf{c}$ and $\mathbf{b} - \mathbf{c}$ are perpendicular, or equivalently that

$$(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c}) = 0$$
.

Define new vectors

$$\mathbf{a}' = \mathbf{a} - \mathbf{x}$$
, $\mathbf{b}' = \mathbf{b} - \mathbf{x}$, $\mathbf{c}' = \mathbf{c} - \mathbf{x}$.

It follows from the definitions that $\mathbf{a}' = -\mathbf{b}'$, and all three vectors \mathbf{a}' , \mathbf{b}' , \mathbf{c}' have length r. Furthermore, we also have

$$\mathbf{a}' - \mathbf{c}' = \mathbf{a} - \mathbf{c}$$
, $\mathbf{b}' - \mathbf{c}' = \mathbf{b} - \mathbf{c}$

and therefore the conclusion of the theorem translates into the condition

$$(\mathbf{a}' - \mathbf{c}') \cdot (\mathbf{b}' - \mathbf{c}') = 0$$
.

Since $\mathbf{a}' = -\mathbf{b}'$, we may rewrite the expression on the left hand side as

$$(-{\bf b}'-{\bf c}')\cdot({\bf b}'-{\bf c}') \ = \ -({\bf b}'+{\bf c}')\cdot({\bf b}'-{\bf c}') \ = \ -\big(\,|{\bf b}'|^2-|{\bf c}'|^2\,\big) \ .$$

Since \mathbf{b}' and \mathbf{c}' both have length r, it follows that this expression equals zero, which is what we needed to show in order to prove the theorem.