
 

3.B. Geometric proportions and the Condition of Eudoxus 
 

 
One important motivation for the Condition of Eudoxus was to consider geometric ratios 
involving incommensurable quantities; in modern language, these are lengths |WX| 

and |YZ| such that the quotient |WX| / |YZ| is not a rational number.  A basic 

problem of this nature is depicted in the figure below:  
  

 
 

In this picture the lines BD and CE are assumed to be parallel, and one wants to prove 
that  
 

|AB| / |AC|    =    |AD| / |AE|. 
 

If the left hand side is a rational number p/ q, then standard manipulations of ratios show 

that 
 

|AB| / p    =    |AC| / q 
 

and ideas discussed in the proof of the Notebook Paper Theorem imply that 
 

|AD| / p    =    |AE| / q 
 

which then quickly yields |AD| / |AE|  =  p/q  =  |AB| / |AC|.  Of course, this 

argument breaks down completely for ratios |AB| / |AC| which are equal to irrational 

numbers like sqrt (2), and we need the Condition of Eudoxus to handle such cases. 
 

Here is a formal statement of Eudoxus’ criterion for two ratios to be equal: 
 

Two ratios of (positive real) numbers a /b and c / d are equal if and only if for each pair 

of positive integers m and n we have the following: 
 

ma   <   nb  implies  mc   <   nd 
 

ma   >   nb  implies  mc   >   nd 

 
The derivation of this criterion is based upon a fundamentally important rational density 
property of the real numbers:   
 



If we are given real numbers  x  and  y  such that  x < y, then 

there is a rational number  r  such that  x < r < y.   
 

Further details about this implication are contained in the first supplement to this unit 
(see http://www.math.ucr.edu/~res/math153-2019/history03a.pdf).  
 

APPLICATION OF THE CONDITION OF EUDOXUS TO PROPORTIONALITY 

QUESTIONS.   Suppose now that we have triangles ����ABD and ����ACE as in the figure 
below, where BD is parallel to CE; as in the figure we assume that the rays [AB and [AC 

are the same and likewise that the rays [AD and [AE are the same.   Let  a = |AB|,  

b = |AC|,  c =  |AD| and  d  =  |AE|.   We want to use the Condition of Eudoxus 

to conclude that a /b =  c / d. 
 

 
 

Suppose first that  m and  n are positive integers such that  ma < nb.   We want to 

show that  mc < nd.  We can find points P and Q on the ray [AB =  [AC such that 

|AP| =  ma and |AQ| =  nb.  Since  ma  <  nb, it follows that P is between A and 
Q.   One can then find unique parallel lines to BD and CE through P and Q.  These two 

lines will meet the line AD = AE in two points R and S.   A proper formulation of 
concepts like betweenness, the two sides of a line, and so on will imply that S and R 

also lie on the ray  [AD  =  [AE and that  R  is between A and S. 
 

The proportionality results in the commensurable case now imply that 
 

|AR| / |AD| =  m  = |AP| / |AB| and 
 

|AS| / |AE| =  n  = |AQ| / |AC|. 
 



Therefore |AR| =  mc  and  |AS| =  nd  also hold.  By observations in the previous 

paragraph we know that  |AR|  <  |AS|, and thus we may use the preceding sentences 

to rewrite this as  mc   <   nd.  To summarize, we have now shown that  ma   <   nb 

implies  mc   <   nd. 
 

If we have  ma > nb, then we may proceed similarly. The argument is basically the 
same except that Q will be between A and P, and this will in turn imply that S is between 

A and R.  Following the same line of reasoning in this case, one concludes that  ma > 

nb  implies  mc   >   nd.   Therefore we have established both parts of the Condition of 

Eudoxus, and consequently we have shown that a /b  =  c / d; by definition of the 

numbers a, b, c, d in this equation, the desired proportionality equation |AB| / |AC| = 

|AD| / |AE| is an immediate consequence.  


