THE CHORD FUNCTION

One of the earliest trigonometric functions was the chord function \mathbf{crd} ; given an angle θ between 0 and π radians, the value of $\mathbf{crd} \theta$ is given by constructing an isosceles triangle ΔABC , where $\mathbf{d}(A,B) = \mathbf{d}(A,C) = 1$ and $|\angle BAC| = \theta$, and taking the length of the third side [AC].

- 1. Prove that $\operatorname{crd} \theta = 2 \sin \frac{1}{2} \theta$ and use this to find a Maclaurin series $C(\theta)$ for the chord function.
- **2.** Let $C_n(\theta)$ be the n^{th} degree polynomial approximation to the power series $C(\theta)$ in the preceding exercise. Find a value of n such that $|C_n(\theta) C(\theta)| < 0.0005$ for all θ in the interval $[0, \frac{1}{2}\pi]$. [Hint: Use the remainder term in Taylor's Theorem together with the estimate for the error term in the Leibniz test for alternating series.]