
 

 

4.  Alexandrian mathematics after Euclid — I I 
 
 
Due to the length of this unit, it has been split into three parts. 
 

Apollonius of Perga 
 
If one initiates a Google search of the Internet for the name “Apollonius,” it becomes 
clear very quickly that many important contributors to Greek knowledge shared this 

name (reportedtly there are 193 different persons of this name cited in Pauly-Wisowa,  
Real-Enzyklopädie der klassischen Altertumswissenschaft), and therefore one must pay 
particular attention to the full name in this case.   The MacTutor article on Apollonius of 
Perga lists several of the more prominent Greek scholars with the same name. 
 

Apollonius of Perga made numerous contributions to mathematics (Perga was a city on 

the southwest/south central coast of Asia Minor).   As is usual for the period, many of 
his writings are now lost, but it is clear that his single most important achievement was 
an eight book work on conic sections, which begins with a general treatment of such 
curves and later goes very deeply into some of their properties.   His work was extremely 
influential; in particular, efforts to analyze his results played a very important role in the 
development of analytic geometry and calculus during the 17th century. 

 
Background discussion of conics 

 
We know that students from Plato’s Academy began studying conics during the 4th 
century B.C.E., and one early achievement in the area was the use of intersecting 

parabolas by Manaechmus  (380 – 320  B.C.E., the brother of Dinostratus, who was 
mentioned in an earlier unit) to duplicate a cube (recall Exercise 4 on page 128 of 
Burton).   One of Euclid’s lost works (reportedly consisting of four books) was devoted to 
conics, and at least one other early text for the subject was written by Aristaeus the 

Elder (c. 360 – 300 B.C.E.).   Apollonius’ work,  On conics, begins with an organized 
summary of earlier work, fills in numerous points apparently left open by his 
predecessors, and ultimately treat entirely new classes of problems in an extremely 
original, effective and thorough manner.  In several respects the work of Apollonius 
anticipates the development in coordinate geometry and uses of the latter with calculus 
to study highly detailed properties of plane curves.  Of the eight books on conics that 

Apollonius wrote, the first four have survived in Greek, while Books V through V I I only 

survived in Arabic translations and the final Book V I I I is lost; there have been attempts 
to reconstruct the latter based upon commentaries of other Greek mathematicians, most 

notably by E. Halley (1656 – 1742, better known for his work in astromony), but they all 
involve significant amounts of speculation.   Some available evidence suggests that the 
names ellipse, parabola and hyperbola are all due to Apollonius, but the opinions of 
the experts on this are not unanimous.  

 
Four ways of describing conics 

 
Since conic sections are curves in a plane, one would clearly like to define them entirely 

in terms of the plane containing them, without appealing to a 3 – dimensional figure like 



 

 

a cone.   Greek mathematicians discovered several ways of doing so.  In modern 
terminology, here are a few basic alternative descriptions of conics. 

 

1.  Definition using quadratic equations in coordinate geometry 
 

2.  Definition using focal points 
 

3.  Definition using a focus and directrix of the curve 
 

Before presenting these descriptions, we shall give the classical definitions.  The two 
best known conics are the  circle  and the  ellipse. These arise when the intersection of 
cone and plane is a closed curve. The circle is a special case of the ellipse in which the 
plane is perpendicular to the axis of the cone. If the plane is parallel to a generator line 
of the cone, the conic is called a  parabola.   Finally, if the intersection is an open curve 
and the plane is not parallel to a generator line of the cone, the figure is a hyperbola; in 
this case the plane will intersect both halves of the cone, producing two separate 
curves, though often one is ignored.  
 

The degenerate cases, where the plane passes through the apex of the cone, resulting 
in an intersection figure of a point, a straight line or a pair of lines, are often excluded 
from the list of conic sections. 
 

 
 

Graphic visualizations of the conic sections 
(Source:  http://dgd.service.tu-berlin.de/wordpress/vismathss2013/author/knoeppel/) 

 

We shall now discuss how one retrieves the equivalent descriptions.   
 

1.  Definition using quadratic equations in coordinate geometry.  Today we usually 
think of conics in the coordinate plane as curves defined by quadratic equations in two 
variables.   In Cartesian coordinates, the graph of a quadratic equation in two variables 
is always a conic section, and all conic sections arise in this way.  If the equation is of 
the form  
 

 
 

then we can classify the conics using the coefficients as follows:  
 

If h
2
 = ab, the equation represents a parabola.  

If h
2
 < ab, the equation represents an ellipse.  

If h
2
 > ab, the equation represents a hyperbola.  

If a = b and h = 0, the equation represents a circle.  
If a + b = 0, the equation represents a rectangular hyperbola.  



 

 

The latter is defined in terms of the asymptotes of a hyperbola, which are intersecting 
lines which the curve approaches as it goes to infinity.   
 

 
 

(Source:  
http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Kim/emat6690/instructional

%20unit/hyperbola/Hyperbola/Hyperbola.htm) 

 
A hyperbola is said to be rectangular if the intersecting lines meet at a right angle.   
 
The file  http://math.ucr.edu/~res/math153-2019/history04d.pdf  contains derivations of the 
standard equations for conics from their classical description as intersections of planes 
with a cone. 
 
2.  Definition using focal points.   The focal point(s) of a conic may be viewed as 
useful counterparts to the center of a circle.  A parabola has one focus, while an ellipse 
or parabola has two.  One can define an ellipse to be the set of all points P such that the 
sum of the distances |F1P| + |F2P| is constant, where F1 and F2 denote the focal points.  
Similarly, a hyperbola is can be defined to be all P such that the (absolute value of) the 

difference of the distances |F1P| –  |F2P| is constant. 
 

          
 

 (Sources: https://en.wikipedia.org/wiki/Ellipse, https://en.wikipedia.org/wiki/Hyperbola) 

 
One can retrieve the previous equations for ellipses and hyperbolas by starting with the 
distance equations  
 

     
 

     

 



 

 

removing the square roots by suitable squaring, and using the relations  c2
 = a2

 – b2
  

(for the ellipse) or  b2
 = c2

 – a2
  (for the hyperbola).   

 

3.  Definition using a focus and directrix of the curve.    A coordinate – free and 
unified approach to ellipses, hyperbolas and parabolas approach starts with a point F 

(the focus), a line L not containing F  (the directrix) and a positive number e  (the 
eccentricity); focal points for conics appear in Apollonius’ writings, and the concept of 
directrix for arbitrary conics is apparently due to Pappus of Alexandria (whom we shall 

discuss in the next unit).  The conic section  ΓΓΓΓ  associated to F,  L and  e  then consists 

of all points  P  whose distance to F equals e times their distance to L.   When 0 < e 

< 1 we obtain an ellipse, when e  =  1 we obtain a parabola, and when e  > 1 we 
obtain a hyperbola.  
 

 

 

(Source: https://www.mathsisfun.com/geometry/conic-sections.html) 
 

For an ellipse and a hyperbola, two focus – directrix combinations can be taken, each 
giving the same full ellipse or hyperbola; in particular, ellipses and hyperbolas have two 

focal points.  The distance from the center of such a curve to the directrix equals a / e, 

where a is the semi – major axis of the ellipse (the maximum distance from a point on 
the ellipse to its center), or the distance from the center to either vertex of the hyperbola 
(the minimum distance from a point on the hyperbola to its center).  
 

In the case of a circle one often takes e  =  0 and imagines the directrix to be infinitely 
far removed from the center (for those familiar with the language of projective geometry, 
the directrix is taken to be the “line at infinity”).  However, the statement that the circle 

consists of all points whose distance is e times the distance to L is not useful in such a 
setting, for the product of these two numbers is formally given by zero times infinity.   In 



 

 

any case, we can say that the eccentricity of a conic section is a measure of how far it 
deviates from being circular.  
 

For a given choice of a, the closer e is to 1, the smaller is the semi – minor axis. 
 
Here is a reference for a fairly detailed derivation for the relation between the standard 

quadratic polynomial description of conics and the focus – directrix approach: 
 

https://www.open.edu/openlearn/science-maths-technology/mathematics-and-
statistics/vectors-and-conics/content-section-4.3 

 
Outline of Apollonius’ books On Conics 

 
We have already discussed some general features of Apollonius’s influential writings on 
conics,  and we shall now summarize the contents of this work a little more specifically.  
The first four books give a systematic account of the main results on conics that were 
known to earlier mathematicians such as Manaechmus,  Euclid and  Aristaeus the Elder, 
with several improvements due to Apollonius himself.  This is particularly true for Books 

I I I and I V; in fact, the majority of results in the latter were apparently new.   
 

One distinguishing property of noncircular conics is that they determine a pair of 
mutually perpendicular lines that are called the major and minor axes.  For example, in 
an ellipse the major axis marks the direction in which the curve has the greatest width, 
and the minor axis marks the direction in which the curve has the least width.  Apollonius 
analyzes these axes extensively throughout his work.  Here are a few basic points 
covered in his first four books. 
 

1. Tangents to conics are defined, but not systematically as in analytic geometry 
and calculus.  Instead, tangents were viewed as lines that met the conic (or 
branch of the conic for hyperbolas) in one point such that all other points of the 
conic or its branch lie on the same side of that line. 

   

2. Asymptotes to hyperbolas were defined and studied. 
 

3. Conics were described in terms of (Greek versions of) algebraic second degree 
equations involving the lengths of certain line segments.  Several different 
characterizations of this sort were given.  In many cases these results are 
forerunners of the algebraic equations that are now employed to describe conics. 

 

4. The intersection of two conics was shown to consist of at most four points. 
 

Here is a typical result from the early books:   Suppose we are given a parabola and a 
point X on that parabola that is not the vertex V.  Let B be the foot of the 
perpendicular from X to the parabola’s axis of symmetry, and let A be the point where 

the tangent line at X meets the axis of symmetry.  Then the distances |AV| and |BV| 
are equal. 
 
 



 

 

 
 

A proof of this result using modern methods is given in an addendum (4A) to this unit; in 

principle, this result is equivalent to saying that the derivative of x 

2
 is 2x. 

  

Books V – V I I of On Conics are highly original.  In Book V, Apollonius considers 
normal lines a conic; these are lines containing a point on the conic that are 
perpendicular to the tangents at the point of contact.  As in calculus, Apollonius’ study of 
such perpendiculars uses the fact that they give the shortest distances from an external 

point to the curve.   Book V also discusses how many normal (or perpendicular) lines 
can be drawn from particular points, finds their intersections with the conics by 
construction, and studies the curvature properties of conics in remarkable depth.  The 
answers to these questions are more complicated than one might expect.  Specifically, 
for each noncircular conic there is an associated curve called the evolute, which is 
defined in terms of the curvature properties of the original conic and determines the 
number of normals that can be constructed.  In the drawing below the conics are given 
by the blue curves and their evolutes are the red curves. 

 

 

             

 
For an ellipse, the number of normals is 4, 3 or 2 depending upon whether a point lies 
inside, on or outside the evolute.  For a hyperbola, two normals can be drawn to the 
hyperbola from a point between the two branches of the evolute, but from a point beyond 
the evolute, four normals can be drawn.  Finally, for a parabola three normals can be 
drawn to the parabola from a point above the evolute, but only one normal can be drawn 
to the parabola from a point below the evolute.  
 

One main objective of Book V I is to show that the three basic types of conics are 
geometrically dissimilar in roughly the same way that, say, a triangle and a rectangle are 

dissimilar.   In Book V I I, Apollonius deals with the various relationships between the 
lengths of diameters and their conjugate diameters, which are defined as follows:  
Given a diameter  AB  of the conic (which passes through the center of the conic), the 



 

 

endpoints of the conjugate diameter  CD are points such that the tangents to the conic at 
C  and D  are parallel to  AB (see the drawing below). 
 

 
 

(Source:  http://mysite.du.edu/~jcalvert/math/ellipse.htm) 
 

Here is a simple but basic result on conjugate diameters due to Apollonius:  
 
Suppose we are given an ellipse whose major and minor axes have lengths 2a and 2b 
respectively, and suppose that we have a pair of conjugate diameters whose lengths are 

2c1 and 2c2.  Then   a
2
  +  b2

  =  c1
2
  +  c2

2
. 

 

 
 
Results of this type are then applied to the exposition of a number of problems, as well 
as to some problems that Apollonius indicates will be demonstrated and solved in Book 

V I I I, which was lost in antiquity.  The final portion of the work contains (or is reputed to 
contain)  further results involving major and minor axes and their intersections with the 
conics.   
 

A treatment of Apollonius’ work in (relatively) modern terms is given in the following 
book: 
 

H. G. Zeuthen,  Die Lehre von den Kegelschnitten im Altertum (The study 
of the conic sections in antiquity; translation from Danish into German by R. 
von Fischer-Benzon), A. F. Höst & Son, Copenhagen, DK, 1886.  See the file 
http://math.ucr.edu/~res/math138A-2018/zeuthen.pdf for an online copy 

from Google Book Search. 

 



 

 

The Problem of Apollonius 

 
In an essay on Tangencies,  Apollonius is also known for posing the following general 
problem (frequently called the Problem of Apollonius): Given three geometric figures, 
each of which may be a point, straight line, or circle, construct a circle tangent to the 

three.  The most difficult case arises when the three given figures are circles.   —  Trial 
and error frequently yields explicit solutions to this problem in specific instances, and in 
fact one can see that there are up to 8 different solutions in some cases. 
 

 
 

(Source:  http://mathworld.wolfram.com/ApolloniusProblem.html) 
 

Apollonius claimed to have solved this problem, but his solution is lost.  There is also 
further information on this topic in the following online sites: 

 

http://www.ajur.uni.edu/v3n1/Gisch%20and%20Ribando.pdf 
 

http://en.wikipedia.org/wiki/Problem_of_Apollonius 
 

http://jwilson.coe.uga.edu/emt725/Apollonius/Prob.Apol.html 
 

 
Other works of Apollonius 

 
Most of Apollonius’ other works are lost, but we have some information about this work 
from the writings of others.  In a computational work called Quick Delivery he gave an 

estimate of 3.1416 for π that was better than the more commonly used Archimedean 

estimate of 22/7.  We shall only mention two other items on the list. 
 

The first involves Apollonius’ work on mathematical astronomy.  His view of the solar 
system was that the sun rotated around the earth but the remaining planets rotated 
around the sun.  This clearly differs from the more widely held belief that everything 
rotated about the earth.  However, well before his time astronomical observations 
showed beyond all doubt that the planets did not move around the earth in perfectly 
circular orbits.   If this were the case, then just like the moon the planets’ observed paths 
across the sky would be straight from east to west, but astronomical observations show 
that sometimes the planets seem to move backwards (retrograde motion).  The 
following pictures for the motion of Mars illustrate this phenomenon: 
 



 

 

 
 (Source: http://cseligman.com/text/sky/retrograde.htm) 

 

Apollonius explanation for planetary motion evolved indirectly into a cornerstone of 
Claudius Ptolemy’s later work in the 2nd century A.D. .  A major feature of Ptolemy’s 
theory was a hypothesis that the planets moved in combinations of circles which are 
called epicycles.  The idea is similar to our concept of the Moon’s motion around the 
earth; namely the moon moves around the earth in an ellipse while the earth in turn 
moves around the sun in another ellipse.  However, in Apollonius’ (and Ptolemy’s) 
setting the curves were circles rather than ellipses and there was no actual mass 
corresponding to the center of the smaller circle.  Here is a simple illustration of 
epicycles: 
 
 

 
 

(Source:  
http://www.cartage.org.lb/en/themes/Sciences/Astronomy/TheUniverse/

Oldastronomy/TheUniverseofAristotle/TheUniverseofAristotle.htm ) 
 

There are also some animated graphics on the site from which this picture was taken. 
 

A more elaborate illustration of this motion model is illustrated below; in this example, 
there is in fact a second epicycle moving around the first one.  The Ptolemaic theory of 
planetary motion required  dozens  of such higher order epicycles. 
 



 

 

 

 
 

 

(Source:  http://inst.santafe.cc.fl.us/~jbieber/HS/ptol_epi.htm) 
 

The YouTube video  https://www.youtube.com/watch?v=EpSy0Lkm3zM  depicts the 
(hypothetical) orbits of planets around the earth according to the Ptolemaic view of the 
solar system.   
 

Given Kepler’s subsequent discovery that planets move in elliptical paths around the 
sun, it is somewhat ironic that the author of the definitive classical work on conic 
sections proposed motion by epicycles instead, but that is what happened.  Here are a 
few other links to pictures of epicycles, some with animation: 

 

http://www.opencourse.info/astronomy/introduction/05.motion_planets/ 
 

http://www.math.tamu.edu/~dallen/masters/Greek/epicycle.gif 
 

http://www.edumedia.fr/animation-Epicycle-En.html 
 

Apollonius and his contemporary Diocles (240 – 180 B.C.E.) are also given credit for 
discovering the reflection property of the parabola.  The Greeks knew that one could 
start a fire by focusing the sun’s rays using a convex mirror; stories that Archimedes 
used large mirrors of this sort to set fire to Roman ships are almost certainly incorrect, 
but the idea was known at the time.  The simplest concave mirrors are shaped like a 
portion of a sphere.  However, these do not have a true focus but suffer from a 
phenomenon called spherical aberration.  
  

 
 

(Source: http://www.glenbrook.k12.il.us/gbssci/phys/Class/refln/u13l3g.html) 
 



 

 

The failure of the reflected rays to go through a single point means that a spherical 
mirror is somewhat inefficient in focusing the sun’s rays (or any other rays for that 
matter), but if one uses a parabolic mirror this problem is eliminated.  All incoming light 
rays parallel to the axis of symmetry will then be reflected to the focus of the parabola.  
This property of the parabola is used extensively for devices like antennas and radio 
telescopes that are designed to receive and focus electromagnetic waves. 
 
 

 
 

(Source: 
http://jwilson.coe.uga.edu/EMAT6680Fa08/Wisdom/EMAT6690/Parabolanjw/

reflectiveproperty.htm) 
 

Proving the reflection property of a parabola is basically an exercise in geometry, and 
the following online site contains a proof using methods from elementary geometry: 
 

http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calculus/parabref.html 
 

Needless to say, one can also derive the reflection property for a parabola using vector 

and/or coordinate geometry.  —  Here is a sketch of the proof:  First, choose 

coordinates and measurement units so that the equation of the parabola is given by y 

2
 

=    4ax.  Then the focus f of the parabola turns out to have coordinates  ( a, 0).  Next, 

let p    =     ( b 

2/4a, b)  be a point on the parabola, and for the sake of convenience 

suppose that b is positive (note that the curve is symmetric with respect to the x – 

axis).  Then the direction of the tangent vector at p is given by v    =     (2b, 4a), and 
proving the reflection property amounts to showing that the angle between v and the 

horizontal unit vector  (1, 0)  is equal to the angle between – v and f   –  p, which is 

the same as the angle between v and p  –  f (see the figure below). 
 

 
 

(Source: http://www.analyzemath.com/parabola/parabola_work.html ) 
 

It is enough to show that the cosines of the two angles between the pairs of vectors are 

the same, and since the vectors p, f and v are given explicitly in terms of a and b 



 

 

this is essentially an exercise in using the standard dot product formula for the cosine of 
the angle between two vectors. 

 
Ellipses also have an important reflection property, and it is discussed in the following 
online document: 
 

http://usiweb.usi.edu/students/gradstudents/j_k_l/kleinknecht_s/portfolio/Educ%20690_004%20ST/Hi
story%20of%20Conics.htm 

 

As noted in that reference, one physical consequence of the reflection property is the 
“whispering gallery” phenomenon; if we are given a room shaped like the inside of an 
elliptical region, then a whispered message at one focus of the ellipse can be heard 
more clearly at the second focus than at many other points which are closer to the first 
focus (one example is the Statuary Hall in the U. S. Capitol).   
 

Here is a reference for a mathematical derivation of the reflection property for ellipses: 
 

http://math.ucr.edu/~res/math153-2019/ellipse-reflection.pdf  


