
 

 

4.  Alexandrian mathematics after Euclid — I I I 
 
 
Due to the length of this unit, it has been split into three parts.  This is the final part, and 
it deals with other Greek mathematicians and scientists from the period. 
 

The previously described works or Archimedes and Apollonius represent the deepest 
and most original discoveries in Greek geometry that have been passed down to us over 
the ages (there were probably others that did not survive), and indeed they pushed the 
classical methods to their limits.  More powerful tools would be needed to make further 
advances, and these were not developed until the 17th century.  Much of the subsequent 
activity in ancient Greek mathematics was more directed towards developing the 
trigonometry and spherical geometry needed for observational astronomy and studying 
questions of an arithmetic nature.   At the beginning of this period there was also a 
resurgence of activity in astronomy and its related mathematics which continued the  

tradition of Babylonian mathematics in the Seleucid Empire (c. 300 B.C.E. – 63 B.C.E), 
and although there must have been some interaction, its precise extent is unclear. 

 
Eratosthenes of Cyrene 

 
Eratosthenes (276 – 197 B.C.E.) probably comes as close as anyone from this period to 
reaching the levels attained by Euclid, Archimedes and Apollonius.   He is probably best 
known for applying geometric and trigonometric ideas to estimate the diameter of the 

earth to a fairly high degree of accuracy; this work is summarized on pages 186 – 188 
of Burton.   Within mathematics itself, his main achievement was to give a systematic 
method for finding all primes which is known as the sieve of Eratosthenes.  The idea is 

simple — one writes down all the numbers and then crosses out all even numbers, all 

numbers divisible by 3, and so on until reaching some upper limit — and whatever is 

left must be either 1 or a prime.  Although there has been a very large body of research 
on the distribution of prime numbers within all the positive whole numbers during the 
past two centuries, for many purposes Eratosthenes’ sieve is still one of the best 

methods available.  A picture of this sieve for integers up to 100 appears on page 186 of 

Burton.  Here is a link to a larger sieve going up to 400; this one is interactive, and one 

can actually see the workings by clicking on the primes up to 19 in succession. 
 

http://www.faust.fr.bw.schule.de/mhb/eratosiv.htm 
 

Here are some links for important results on the distribution of primes: 
 

http://mathworld.wolfram.com/PrimeCountingFunction.html 
 

http://mathworld.wolfram.com/PrimeNumberTheorem.html 
 

 
Aristarchus of Samos 

 
Aristarchus (c. 310 B.C. –  c. 230 B.C.) is best known for challenging conventional 
beliefs that the earth was the center of the universe.  He is also recognized for his 
extensive study of large scale astronomical measurements like the sizes of the sun and 
the moon and their distances from the earth, and his conclusions about the size of the 



 

 

sun may have motivated his sun – centered theory of the universe.  Here is a summary 
of his conclusions:   
 

https://en.wikipedia.org/wiki/Aristarchus_of_Samos 
 

Aristarchus’ computations suggest familiarity with simple versions of expressions known 
as continued fractions.  These expansions of numbers have the form 
 

 
 

where  a0  is an integer and all the other numbers  ai  ( i  >  0 )  are positive integers.  
Clearly every finite sum of this type is a (positive) rational number, and a basic result in 
the theory of continued fractions implies that every positive rational number has exactly 
two expansions of this form;  to see the lack of absolute uniqueness, note the if a 

rational number has a finite expansion with nested rational denominators [ a1 , … , am ] 

with am >  1   also has a second expansion whose nested rational denominators are given 

by [ a1 , … , am –––– 1, 1].   It is also possible to consider infinite  continued fraction 

expansions, and in fact there is a one – to – one correspondence between such objects 
and positive irrational numbers (hence every positive irrational number has a unique 
expansion of this type); these representations of a number are noteworthy because their 

initial segments (formed by suppressing all sufficiently large ai) yield excellent rational 
approximations to the given irrational number.  Expressions involving square roots often 
have very regular expansions as continued fractions.  Here is one example:   
 

 
(Source:  http://mathsvideos.net/tag/continued-fractions/) 

 

Furthermore, the analogous infinite expansion with ones replacing the twos will yield the 

value 1 + φφφφ  =  ½ ( sqrt (5) + 1)  =  1.61803398874989484820458683436564 …  where  

φφφφ        is the number already mentioned in Unit 3.  Still further examples of continued 
fraction computations appear in a supplement to this unit and the following documents: 

 

https://www.mathpath.org/concepts/cont.frac.htm 
 

https://www.mathpath.org/Algor/squareroot/algor.square.root.contfrac.htm 
  

Continued fraction expansions are useful in several contexts; for example, they have 
important applications to finding solutions for Pell’s equation, which was mentioned 
earlier; the general method for finding solutions was  described by the Indian 

mathematician Bhaskara (Bhaskaracharya, 1114 – 1185), and a rigorous proof that 

solutions always exist — using continued fractions — was first given by J. – L. Lagrange 

(1736 – 1813).  Here are a few printed and online references for further information (in 
particular, the book by Khinchin is a classic which is written at an elementary level): 



 

 

 

A. YA. Khinchin, Continued Fractions.  Dover, New York, 1997. 
 

A. M.  Rockett and P. Szüsz, Continued Fractions.  World Scientific 
Publishing, River Edge, NJ, 1992. 

 

http://en.wikipedia.org/wiki/Continued_fraction 
 

http://mathworld.wolfram.com/ContinuedFraction.html 
 

http://archives.math.utk.edu/articles/atuyl/confrac/ 
 

http://www-math.mit.edu/phase2/UJM/vol1/COLLIN~1.PDF 
 

http://www.cut-the-knot.org/do_you_know/fraction.shtml  

  
Trigonometry and spherical geometry in Greek mathematics 

  
We have already mentioned the increasingly prominent role of trigonometric studies in 
Greek mathematics and the links to astronomy.  Many individuals who contributed to one 
of these fields also contributed to the other, and a great deal of work was done to 
tabulate values of trigonometrically related functions.  Two particularly important names 

in this respect are Hipparchus of Rhodes (190 – 120 B.C.E.), to whom we owe concepts 

of latitude and longitude (and possibly the 360 degree circle), and Claudius Ptolemy (85 

– 165 A.D.), whose Almagest was the definitive reference for both astronomers and 
navigators until later parts of the 16th century.  Incidentally, one can see from the dates 
of his lifetime that Claudius Ptolemy was not a king from the Ptolemaic dynasty that 
ruled Egypt during the time between the death of Alexander the Great and the conquest 

of Egypt by Octavian (=  Caesar Augustus, 63 B.C.E. – 14 A.D.) around 30 B.C.E. with 

the defeat of Mark Antony (83 B.C.E. – 30 B.C.E.) and Cleopatra V I I  Philopator (69 

B.C.E – 30 B.C.E., reigned 51 B.C.E – 30 B.C.E.). 
 

Thanks to the work of individuals like Hipparchus and Ptolemy, Greek mathematicians 

constructed extensive tables of the chord function crd, whose value at an angle θθθθ  is the 

length of a chord in a circle of radius 1 that intercepts an arc with angular measure θθθθ .  
 

 

Of course, today we usually do not have separate tables for crd θθθθ ,  but we can find its 

values easily by observing that crd θθθθ   is just twice the sine of ½θθθθ .   

 
Spherical geometry 

 
Given the role of trigonometry in astronomical observations, one should more or less 
expect that Greek mathematicians were acquainted with many aspects of spherical 

geometry.  The work of Menelaus of Alexandria (70 – 130 A.D.) is particularly significant 
in this respect and summarizes the knowledge of spherical geometry in ancient Greek 
mathematics.   There is an extensive body of results in spherical geometry and 



 

 

trigonometry that has remarkable similarities to plane geometry in some respects but 
remarkable differences in others.  On the surface of a sphere, the shortest distance 

between two points is along a great circle arc (i.e., a circle whose center is also the 
center of the sphere), and accordingly spherical triangles are formed using three great 
circle arcs.  In contrast to the more numerical approach of many near – contemporaries,  
the work of Menelaus is formulated in the Euclidean tradition.  
 

 
 

(Source: http://www.math.sunysb.edu/~tony/whatsnew/column/navigation-0700/images/globe2.gif) 
 

There are congruence theorems for spherical triangles that are analogous to the 
standard congruence theorems for plane triangles, and there are analogs of results like 

the Law of Sines and the Law of Cosines, but there is also an Angle – Angle – Angle 

congruence theorem for spherical triangles.  At first the final Angle – Angle – Angle 
theorem may seem surprising, but it reflects two important ways in which spherical 
triangles differ from plane triangles.  The sums of the measures of the vertex angles are 

always greater than 180
o
, and in fact their areas are proportional to the excess of the 

angle sum over 180
o
.  For example, as the drawing below suggests, if we construct 

spherical triangles such that one vertex is the North Pole and the other two are one the 
equator, then the resulting spherical triangle has two right angles at the equatorial 
vertices, and the measure of the angle at the polar vertex is an arbitrary angle between 

0
o
 and 180

o
.   

  

 
 

http://sciencevspseudoscience.files.wordpress.com/2011/12/sphereical_hyperbolic.png?w=280&h=300 
 

It follows immediately that if the three angles in a spherical triangle have equal 
measures, then the triangles have the same area, and since two triangles in plane 

geometry with equal angles and equal areas are congruent, the Angle – Angle – Angle 
congruence theorem is not really all that shocking (for the Euclidean result see the file 
http://math.ucr.edu/~res/math153-2020/week4/unit04/congruence%20vs%20similarity.pdf ).  
Further information on these topics from spherical geometry is discussed in the following 
online file: 
 

http://math.ucr.edu/~res/math133-2018/geometrynotes5a.f13.pdf  
 

 



 

 

 
 

Other prominent contributors 

 
The increase of numerical work in Greek mathematics is evident from the work in 
trigonometry, and with the absorption of many Hellenistic states in the Roman Empire 
the study of numerical questions became even more pronounced, with increasing 
influence from Egyptian and Babylonian mathematics.    
 
One widely recognized near-contemporary of Menelaus is Heron (or Hero) of Alexandria 

(10 A.D. – 75 A.D.).  Today he is best known for the formula (Hero’s formula) giving 
the area of a triangle in terms of the lengths of its sides 
 

AREA   =    sqrt (  s (s – a) (s – b)  (s – c) ) 
 

where  a, b, c  are the lengths of the sides and the semiperimeter s is equal to the 

familiar expression  ½ ( a + b + c ), which of course is equal to half the perimeter of the 

triangle.  This result appears in several of his books with a derivation in his Metrica.  A 

derivation of Heron’s Formula appears on pages 8 – 9 (which are numbered 150 – 151) 
of the following online document: 

 

http://math.ucr.edu/~res/math133-2018/geometrynotes3c.f13.pdf   
 

There are statements (particularly in Arab commentaries) that Heron’s Formula had 
been known to earlier mathematicians including Archimedes, but Heron’s proof is the 
earliest one that has survived (so far as we currently know).  Heron’s interests were 
extremely wide ranging, and he was particularly adept at applications of mathematical 
ideas to other areas including mechanics and geodesy.  His analysis of reflected light 
very closely anticipated P. Fermat’s minimum principle in optics nearly 1600 years later.  
One reflection of Heron’s broad interests in other subjects is how he mixed approximate 
and actual results to a degree one rarely finds in Greek mathematics.   Many of his 
writings were used extensively for many centuries afterwards.   
 
Yet another noteworthy mathematician from this period was Nichomachus of Gerasa 

(c. 60 – c. 120 A.D.), whose Introductio Arithmeticæ gave a systematic account of 
arithmetic which was independent of geometry and was an influential work for 14 
centuries (Gerasa, now called Jerash, is in the northwest part of the Kingdom of Jordan).  
His approach was basically Pythagorean; for example, his wrote about mystical 
properties of numbers and was interested in the connections between mathematics and 
music.  A more detailed discussion of his legacy appears on page 94 of Burton. 

 
 

Mathematics and the Romans 

 
Given the enormous historical importance of Roman civilization, it is very remarkable 
that their impact of the development of mathematics was extremely limited and indeed 
almost negligible.  Of course, Greek mathematics was active at the same time, and as 

indicated by the following quote from Cicero (Marcus Tullius Cicero, 106 – 43 B.C.E.) 
the Romans were content to let the Greeks have this subject for themselves. 
 



 

 

With the Greeks geometry was regarded with the utmost respect, and 
consequently none were held in greater honor than mathematicians, but 
we Romans have delimited the size of this art to the practical purposes 
of measuring and calculating.  [From Cicero’s  Tusculan  Disputations ] 

 

To put this into proper context, it is important to note that Cicero was well – versed in 
Greek scholarly writings, and his own work shows a clear appreciation for the Greek 
mathematical legacy.   There were also a few other Roman authors whose writings show 
significant influence from Greek mathematics.  One particularly important example was 

Vitruvius (Marcus Vitruvius Pollio, c. 80 – 25 B.C.E.), whose treatise on architecture (De 
Architectura) applied Greek geometry very systematically to analyze the sorts of 
geometric designs and precision drawing that are needed for architectural purposes.  
For both Cicero and Vitruvius, the theoretical and cultural aspects of Greek mathematics 
were seen as linked to practical use, but in contrast to the Greek perspective these 
aspects were not always viewed as independent of practical use (this applies to Vitruvius 
in particular).   
 
Probably most widely recognized aspect of mathematics from Roman civilization is the 
system of Roman numerals which is still used today for some everyday purposes (as 
opposed to somewhat artificial mathematics exercises asking for the products of 

intimidating expressions like  CCXXIV  and  CCCXXVI ).  No one has used them 
systematically to do arithmetic for many centuries (as noted on page 280 of Burton, for 
about half a millennium) but they are often used to suggest importance or timelessness 

(like  MDCCLXXVI on the reverse of the Great Seal of the U. S.) or to provide an 
alternate numbering system in situations where such notation is useful for the sake of 
clarity (for example, numbering introductory pages in a book or listing things like topics, 
subsections or clauses in a legal statute).   The origins of the Roman numbering system 
are discussed in the online article http://en.wikipedia.org/wiki/Roman_numerals . 
 

The so – called Caesar cipher is another item relating mathematics and the Romans in 

popular culture; the idea is that one replaces letter number k  in the alphabet with letter 

number   k + C  for some constant C, cycling back to 1, 2, 3  etc. when k + C reaches  

27, 28, 29  etc. .  One frequently used example of a Caesar cipher is the  ROT13  code 

which is sometimes employed to prevent — or at least discourage — the reading of 
certain electronic messages or postings (see  http://decode.org  for further comments 

and an online encoder/decoder); in the  ROT13  table below the letters in the same 
columns are interchanged. 
 

  A B C D E F G H I J K L M   
                 

  N O P Q R S T U V W X Y Z   

 

For example, with this code  MATH  becomes encoded as  ZNGU. 
 
In fact, codes were known before Roman times (and deliberate encryption to preserve 

secrecy dates back at least to the Babylonians), and the writings of Aulus Gellius (c. 125 

– after 180 A.D.) suggest that Julius Caesar (100 – 44 B.C.E.) may have also used 
more sophisticated encryption procedures.   However, modern cryptography really 
originates from later work of Arabic scientists.   
 
 


