4.C. Continued fraction expansions

Given two positive numbers a and b, we define the simple reciprocal sum expression RS(a,b)

by the formula
1

a+b’

RS(a,b) =

The theory of continued fraction expansions depends upon the following simple observation:

THEOREM. Let x be a real number such that 0 < z < 1. Then x = RS(a,b) where a is a
positive integer and 0 < b < 1. If x is rational then so is b.

The derivation of this result is simple, for we know that (1/x) > 1, and hence
- = a+b?
x
where a is a positive integer and 0 < b < 1; note that if x is rational then so is b.
If 2 = RS(a,b) as above and b > 0, then we can iterate this process, for then b = RS(a’,d’)

where a’ is a positive integer and 0 < b’ < 1, so that

1

z = RS(a,RS(d\V)) = 7@4_%%,.

Once again, if b’ > 0 we can apply the same consturction to b’.

We shall restrict attention here to rational numbers z such that 0 < x < 1; the irrational case
(which is important mathematically) is discussed in the reference for continued fractions listed in
history04Z.pdf.

PROPOSITION. Let xg be a rational number such that 0 < zo < 1, so that ©o = RS(ny,x1),
where ny is a positive integer and 0 < x1 < 1 is rational. If we are given a pair of sequences {n;}
and {x;} for i < k such that each n; is a positive integer and 0 < z; < 1, define nyy; and xp4q
such that xp = RS(ng41,%k11) as before, and terminate the sequence at this point if and only if
i1 = 0. Then there is some positive integer m such that the sequence terminates at step m; in
other words, eventually one has x,, = 0.

This proposition implies that every rational number x between 0 and 1 has a finite continued
fraction expansion. Specifically, given x( satisfying 0 < zg < 1 consider the sequences of numbers
{zx}, {nr}, {yr} defined recursively by the conditions

(4) no =0 and yo = 1/zo,

) if y;, is defined with y; > 1 and yr = RS(ngr1,k+1) as in the first theorem (so that
nk41 is a positive integer and 0 < xy11 < 1), then yrp41 = 1/xpyq if 241 > 0, and no
further terms in any of the sequences are defined if x4 = 0.

Then the conclusion is that for some m > 1 we get x,,+1 =0, and for 0 < j < m — 1 we have

Notice that at the final step, where z,,+1 = 0, we simply have y,,, = ny41.
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Proof of the proposition. This turns out to be a fairly direct consequence of the Euclidean
long division result for positive integers: If 0 < a < b where a and b are integers then b = aq + r
where ¢ is a positive integer and 0 < r < p. Suppose now that we are given a positive rational
number

€T =

SalS

and consider its reciprocal

1 b r

— = - = q+ -.

x a a
If z = x; in one of the sequences described above, then n;;1 = ¢ and x;41 = r/a. Assume now, as
we obviously may, that ¢ and b have no common integral factors other than 41, so that a and b
are uniquely determined by z. There are now two possibilities; either r = 0 in which case x ;11 = 0,
or else 0 < r < a in which case 0 < 241 < 1 and we may rewrite it in reduced terms as r’/a’,
where r’d = r and a’d = a for some positive integer d (possibly d = 1). In this second case the
numerator of the least terms representation of the positive rational number x;,; is strictly less
than the numerator of x;. Therefore, if x;11, --- ,x;4, are definable with each one positive then
the sequence of reduced terms numerators a = uj,ujq1, -+ ujy4, must be strictly decreasing, and
this means that p < a.

In particular, if we start out with g = a/b, then it follows that x; must be zero for some j < a
and the recursive process must terminate.m

Finding continued fraction expressions. This is extremely routine and best illustrated
with a couple of examples. We shall use x¢ = k/5 for k = 2,3, 4 (the continued fraction expansion
for 1/n is always just 1/n).

Ifxy = %,thenyg:g:2+%,80
2 1
5 2+14
Ifzg = 2, thenyo=3=1+%, sothat z; =2 and y; = 3 =1+ 3. Therefore
3 1.1
5 1+2  1+3
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Finally, if zg = %, then o = % =14+ i, S0
4 1
5 0 1+1-

Clearly we can reverse this process. For example, suppose that we want to fine the rational number
xo for which the continued fraction expression is given by ny = 1,n, = 2,n3 = 3. To find this
number, we note that 3 = ng = y,, so that x4 = %, and hence y; = ng + 20 =2+ % = %, so that

T = %, and similarly yo =n1 + 21 =1+ % = %, so that finally xo = 1—70.

We can do this algorithmically as follows: Suppose that z; = ai/bi. Then we have

1 by,
Tp—1 = ——(aqr = —F
ng + Z—: ngby + ay
so we have the reverse recursive formulas a,_1 = by and b,_1 = nibg + ar. The reverse recursive
process begins with z,,_1 = 1/n,,.



