Integral solutions of 22 + 4 = y

In the seventeenth century P. de Fermat described all integral solutions of the Diophantine
equations 22 +a = 3> where @ = 2 or 4. A link to a proof for a = 2 is given in the online file
histmathl1l.pdf (in the course directory). We shall use the same general ideas to prove Fermat’s
result for the case a = 4.

As in the case a = 2, the proof is based upon the fact that the Gaussian integers Z[i] form a
principal ideal domain (and thus also a unique factorization domain).

Here are three basic facts about Gaussian integers which are helpful:
(1) a+ bi is divisible by 1 + 4 if and only if a = b mod 2.

(2) If y3 = 22 + 4 then the greatest common divisor (x + 2i,x — 2i) is equal to 1 if z is odd
and (1 + )2 if x is even.

(3) If y*> = 2% + 4 then (x + 2i) = i"(a + bi)? for some integers n > 0, a and b.

Derivation of (1). If a+bi = (1+1i)(c+ di) for some Gaussian integer ¢+ di, then it follows by
direct calculation that a = ¢ —d and b = ¢+ d, so that b — a = 2d. Conversely, if b — a is even, say
2d, then if we take ¢ = a + d we can check that a +bi = (1 +i)(c+ di).m

Derivation of (2). Let A be a greatest common divisor of x +2i and z —2i. Then A also divides
their difference, which is 4i as well as their sum, which is 2x. Since (1 +14)* = —4, it follows that
up to a unit in Z[i| the greatest common divisor A is a power of 1 + i; recall that the units in the
Gaussian integers are just +1 and =+i.

If z is odd, the preceding paragraph implies that A divides both 4 and 2z, where z is odd.
This means that A must be a power of 1+ i (note that (14 14)? = 2i). If A were a positive power,
then by (1) it would follow that = 2 mod 2; since x is assumed to be odd, this cannot happen,
and therefore x + 2¢ and = — 2¢ must be relatively prime.

On the other hand, if = is even and we write = 2z, then the equation 22 4+ 4 = y> becomes
4(z? + 1) = y3. This implies that y must be even (otherwise 4 would not divide 33), which in turn
implies that 8 divides 3 and hence 2 must divide 2z 4 1. Since the latter is even, it follows that z2
and hence also z must be odd. By (1) we see that 1 + i must divide z + ¢, and since we have

2 = (14+)(1—i) = (1+i)2-43

it follows that (1 +14)3 must divide x + 2i = 2z + 2i. However, since (1 +14)* = 4 we also know that
(1 +4)* does not divide x + 2i (the imaginary part is not divisible by 4). By the initial paragraph
of this derivation, it follows that (1 +4)% must be a/the greatest common divisor of = 4 2i if z is
even.m

Derivation of (3). Write z+2i =u-v-]; p;j where v is a unit in Z[i], while v = 1 if x is odd
and (1 +4)3 if x is even, and the p; are inequivalent primes in the sense that none is equal to a
unit times another in the list, and furthermore none of these primes are equivalent to 1+ 4. Taking
conjugates, we see that t — 2t =u -7 - Hj D;i.

If z is odd, then by (2) we know that = + 2¢ and x — 2i are relatively prime, and therefore
it follows that for all j and %k the primes p; and P are inequivalent in the sense of the previous
paragraph, and furthermore none of these primes is equivalent to 1 + ¢. Similarly, if x is even,
then by (2) we know that the greatest common divisor of z + 2i and z — 2i is equal to (1 +4)3

1



and 4 = —(1 + i)* divides neither. Furthermore, since 1 —i = i(1 + i) we have v = i%v, so that

r—2i=47u-v- [I; p;"7. From this and (2) we can conclude as before that, if z is even, then for
all 7 and k the primes p; and Py, are still inequivalent in the sense of the previous paragraph.

The preceding discussion yields the following prime factorization in the Gaussian integers:
v o= (z+20)(r—26) = i3uU~U2-H Py H Pr
j k

Since the left hand side is a perfect cube, it follows that each of the exponents r; must be divisible
by 3.

The final step of the argument is to compare the conclusion of the preceding sentence with
the prime factorization for x + 2i described earlier. We already knew that the units in Z[i] are the
powers of i and v is a perfect cube, and now we also know that each term p;j is also a perfect cube.
By the unique factorization property for Z[i] this means that [ j p;j = (a+bi)? for some Gaussian
integer a + bi.m

By the preceding observations we know that z + 2i = i"(a + bi)? for some integers n,a, b with
n > 0. Expanding the right hand side, we find that

r+ 2 = i"((a®—3ab?) + (3a®b—0b%)i) .

This means that either 2 = +(3a%b — b3) or else 2 = +(a® — 3ab?); note that these two cases are
symmetric in ¢ and b. We shall only consider the first of these cases because the other can be
handled similarly by switching the roles of @ and b throughout.

We know that +2 = 3a2b — b®> = b(3a® — b?), and since both terms on the right hand side
are integers it follows that either b equals +1 or £2. If b = +1, then we obtain the equation
+2 = 4(3a? — 1), which implies that a> = 1. On the other hand, if b = 4-2 then we obtain the
equation £2 = =4(6a? — 8), which once again implies that a? = 1.

By the preceding paragraph, the possibilities for a are +1 and the possibilities for b are =1 and
+2. These imply that z + 2i is equal to either " (144)3 or i"(1 4 2i)3 where n is some nonnegative
integer, and if we simplify these expressions we see that = + 2i must be either i"(—2 £ 2i) or
i"(—11 £ 27).

In the first cases we get that y = 2 and x = £2, while in the second we get that y = 5 and
x = £11. Therefore the only positive integer solutions to the equation 22 +4 = y3 are x = y = 2
and x =11, y=5.m



