Integral solutions of $x^2 + 4 = y^3$

In the seventeenth century P. de Fermat described all integral solutions of the Diophantine equations $x^2 + a = y^3$ where a = 2 or 4. A link to a proof for a = 2 is given in the online file histmath11.pdf (in the course directory). We shall use the same general ideas to prove Fermat's result for the case a = 4.

As in the case a = 2, the proof is based upon the fact that the Gaussian integers $\mathbb{Z}[i]$ form a principal ideal domain (and thus also a unique factorization domain).

Here are three basic facts about Gaussian integers which are helpful:

- (1) a + bi is divisible by 1 + i if and only if $a \equiv b \mod 2$.
- (2) If $y^3 = x^2 + 4$ then the greatest common divisor (x + 2i, x 2i) is equal to 1 if x is odd and $(1+i)^3$ if x is even.
- (3) If $y^3 = x^2 + 4$ then $(x + 2i) = i^n(a + bi)^3$ for some integers n > 0, a and b.

Derivation of (1). If a + bi = (1+i)(c+di) for some Gaussian integer c + di, then it follows by direct calculation that a = c - d and b = c + d, so that b - a = 2d. Conversely, if b - a is even, say 2d, then if we take c = a + d we can check that a + bi = (1+i)(c+di).

Derivation of (2). Let Δ be a greatest common divisor of x+2i and x-2i. Then Δ also divides their difference, which is 4i as well as their sum, which is 2x. Since $(1+i)^4 = -4$, it follows that up to a unit in $\mathbb{Z}[i]$ the greatest common divisor Δ is a power of 1+i; recall that the units in the Gaussian integers are just ± 1 and $\pm i$.

If x is odd, the preceding paragraph implies that Δ divides both 4 and 2x, where x is odd. This means that Δ must be a power of 1+i (note that $(1+i)^2=2i$). If Δ were a positive power, then by (1) it would follow that $x \equiv 2 \mod 2$; since x is assumed to be odd, this cannot happen, and therefore x+2i and x-2i must be relatively prime.

On the other hand, if x is even and we write x = 2z, then the equation $x^2 + 4 = y^3$ becomes $4(z^2 + 1) = y^3$. This implies that y must be even (otherwise 4 would not divide y^3), which in turn implies that 8 divides y^3 and hence 2 must divide $z^2 + 1$. Since the latter is even, it follows that z^2 and hence also z must be odd. By (1) we see that 1 + i must divide z + i, and since we have

$$2 = (1+i)(1-i) = (1+i)^2 \cdot i^3$$

it follows that $(1+i)^3$ must divide x+2i=2z+2i. However, since $(1+i)^4=4$ we also know that $(1+i)^4$ does not divide x+2i (the imaginary part is not divisible by 4). By the initial paragraph of this derivation, it follows that $(1+i)^3$ must be a/the greatest common divisor of $x\pm 2i$ if x is even.

Derivation of (3). Write $x + 2i = u \cdot v \cdot \prod_j p_j^{r_j}$ where u is a unit in $\mathbb{Z}[i]$, while v = 1 if x is odd and $(1+i)^3$ if x is even, and the p_j are inequivalent primes in the sense that none is equal to a unit times another in the list, and furthermore none of these primes are equivalent to 1+i. Taking conjugates, we see that $x - 2i = \overline{u} \cdot \overline{v} \cdot \prod_j \overline{p_j}^{r_j}$.

If x is odd, then by (2) we know that x + 2i and x - 2i are relatively prime, and therefore it follows that for all j and k the primes p_j and $\overline{p_k}$ are inequivalent in the sense of the previous paragraph, and furthermore none of these primes is equivalent to 1 + i. Similarly, if x is even, then by (2) we know that the greatest common divisor of x + 2i and x - 2i is equal to $(1 + i)^3$

and $4 = -(1+i)^4$ divides neither. Furthermore, since 1-i=i(1+i) we have $\overline{v}=i^3v$, so that $x-2i=i^3\overline{u}\cdot v\cdot \prod_j \overline{p_j}^{r_j}$. From this and (2) we can conclude as before that, if x is even, then for all j and k the primes p_j and $\overline{p_k}$ are still inequivalent in the sense of the previous paragraph.

The preceding discussion yields the following prime factorization in the Gaussian integers:

$$y^3 = (x+2i)(x-2i) = i^3 u\overline{u} \cdot v^2 \cdot \prod_j p_j^{r_j} \cdot \prod_k \overline{p_k}^{r_k}$$

Since the left hand side is a perfect cube, it follows that each of the exponents r_j must be divisible by 3.

The final step of the argument is to compare the conclusion of the preceding sentence with the prime factorization for x+2i described earlier. We already knew that the units in $\mathbb{Z}[i]$ are the powers of i and v is a perfect cube, and now we also know that each term $p_j^{r_j}$ is also a perfect cube. By the unique factorization property for $\mathbb{Z}[i]$ this means that $\prod_j p_j^{r_j} = (a+bi)^3$ for some Gaussian integer a+bi.

By the preceding observations we know that $x + 2i = i^n(a + bi)^3$ for some integers n, a, b with $n \ge 0$. Expanding the right hand side, we find that

$$x + 2i = i^n ((a^3 - 3ab^2) + (3a^2b - b^3)i).$$

This means that either $2 = \pm (3a^2b - b^3)$ or else $2 = \pm (a^3 - 3ab^2)$; note that these two cases are symmetric in a and b. We shall only consider the first of these cases because the other can be handled similarly by switching the roles of a and b throughout.

We know that $\pm 2 = 3a^2b - b^3 = b(3a^2 - b^2)$, and since both terms on the right hand side are integers it follows that either b equals ± 1 or ± 2 . If $b = \pm 1$, then we obtain the equation $\pm 2 = \pm (3a^2 - 1)$, which implies that $a^2 = 1$. On the other hand, if $b = \pm 2$ then we obtain the equation $\pm 2 = \pm (6a^2 - 8)$, which once again implies that $a^2 = 1$.

By the preceding paragraph, the possibilities for a are ± 1 and the possibilities for b are ± 1 and ± 2 . These imply that x+2i is equal to either $i^n(1\pm i)^3$ or $i^n(1\pm 2i)^3$ where n is some nonnegative integer, and if we simplify these expressions we see that x+2i must be either $i^n(-2\pm 2i)$ or $i^n(-11\pm 2i)$.

In the first cases we get that y=2 and $x=\pm 2$, while in the second we get that y=5 and $x=\pm 11$. Therefore the only positive integer solutions to the equation $x^2+4=y^3$ are x=y=2 and $x=11,\ y=5$.