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The exponential and trigonometric functions are commonly described as transcendental func-
tions. This name strongly suggests that such functions do not satisfy an identity of the form

an(z)f(2)" + ... + a1(z)f(z) + aoz) = 0 (n > 0)

where each a(z) is a polynomial in z and a, (z) # 0. Observe that a function satisfies an identity
of this form if and only if it satisfies an identity

bp(z)f(x)” + ... + bi(z)f(z) + bo(z) = 0 (n > 0)

where each bg(z) is a rational function in z and b,(z) # 0 (to get an expression with polynomial
coefficients, multiply by the product of the denominators of all the nonzero coefficients). The
purpose of these notes is to outline proofs of such statements.

I. Elementary methods and examples

We shall begin by defining algebraic and transcendental functions formally, and we shall ex-
plain how standard results on solutions of higher order linear differential equations and elementary
trigonometric identities imply that e®, sinx and cosz are transcendental.

I.1: Basic definitions

Let J be an open interval in the real number line. We shall be interested in continuous functions
on sets of the form J — F where F' (the exceptional set) is finite. One reason for choosing this
setting is that every quotient of two polynomials (with a nonzero denominator) defines a function
of this type. One important feature of such functions is that they can be added and multiplied (at
the expense of making the exceptional sets larger).

Definition. In the setting above, a continuous function f with on an interval J with a finite
exceptional set is algebraic if there is a strongly nontrivial polynomial in two variables P(z,y)
such that P(z, f(z)) is identically zero (if one excludes the finite exceptional set of f). The term
“strongly nontrivial” means that P cannot be expressed entirely in terms of powers of z (hence is
a genuine polynomial in two variables). A continuous function f with on an interval J with a finite
exceptional set is transcendental if it is not algebraic.
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EXAMPLES. Polynomial functions are automatically algebraic, for one can take P(z,y) =
y — f(z). Radical functions of polynomials are also algebraic; for example, if f(z) = v1+ z2
then we can take P(z,y) = 1+ z2 — y?; we shall discuss this point further in Part II. Rational
functions are also algebraic, for if f(z) = p(z)/q(xz) where p and g are nonzero, then we can let
P(z,y) = q(z)y — p(z).

Notational point. Sometimes a function is said to be algebraic if it can be obtained from
a polynomial by a finite number of steps involving addition, subtraction, multiplication, nonzero
division, and taking n'® roots for an arbitrary positive integer n. We shall call such objects radical
functions. The difference between radical functions and those that are algebraic in our sense will
be described in Part II of these notes.

The first result gives a criterion for a function to be transcendental in terms of linear indepen-
dence of functions.

PROPOSITION. Let the function f be given as above. Then f is transcendental if and only if
for all positive integers N the set of all functions

Zfx)* (0 < jk < N)

1s linearly independent.

Proof. We shall prove that f is algebraic if and only if the set of functions as above is linearly
dependent for some N. The (=) implication is clear, for a strongly nontrivial polynomial identity
implies a nontrivial linear combination of the functions as above is equal to zero. Conversely, if one
has the linear dependence property for some N, then this yields a strongly nontrivial polynomial
identity P(ac, f(x) ) = 0; the reason one must have a strongly nontrivial polynomial is because the
functions {1, z,z2, ... } are linearly independent.m

The following elementary observation will be helpful at some points.

PROPOSITION. Suppose that f is a continuous function defined on an open interval J with
finitely many exceptions, and let J' be a subinterval of J. If f is algebraic, then so is the restriction
of f to J' (with finitely many exceptions). Likewise, if the restriction of f to J' is transcendental,
then f is also transcendental.

Proof. The second statement is just the contrapositive of the first, so it is only necessary to
verify the latter. But if one has an identity of the form P(z, f(z)) = 0 on J with finitely many
exceptions, then the same is clearly true on J'.m

There is a partial converse to the preceding result.

PROPOSITION. Suppose that f and J are as above such that f is defined at every point of J,
and assume in addition that near each point a € J it is possible to express f as a convergent power
series in powers of x — a. Then [ is algebraic if and only if the restriction to some subinterval J'
1s algebraic.

We shall prove this in Section 4 and give examples to show that the conclusion fails without
the assumption about power series expansions.

Examples. If f(r) = |z|, then y = f(z) satisfies the polynomial identity y> — 22, so y is

algebraic. Since the existence of a convergent power series expansion near a point a implies infinite
differentiability at a, it is also clear that f has no convergent power series expansion at 0. One can
construct similar examples of the form |z|z* which have derivatives of arbitrarily high finite order
and are algebraic but also do not have convergent power series expansions at 0.
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It is also possible to construct nonzero functions which are algebraic in our sense but are equal
to zero on some subinterval. For example, consider the function f(z) = = + |z|. This function is
equal to zero for z < 0 and is equal to 2z for z > 0, and it is algebraic because y = z + |z| implies
y — z = ||, so that (y — z)? = 22 and hence 3> — 2yz = 0.

Useful observation. The discussion of this section works for complex valued functions as well
as real valued functions.m

Additional basic formalism

We shall conclude this section by formalizing things a little more and making some observations
that will be useful later.

Definition. Let J be an open interval in the real numbers. Then C#(.J) is defined to be the set
of all continuous functions f defined on some set of the form J — F(f), where F(f) is some finite
subset of J which depends upon f.

LEMMA. Let f be a rational function defined as the quotient of two polynomials p/q where q is
not the zero polynomial. Then f determines an element of C#(J).

Proof. In this case the set of exceptional points is given by the roots for ¢ which lie in the interval
J. Since ¢ is nonzero, it has only finitely many roots.s

The ideas in the preceding argument also yield the following important conclusions.

PROPOSITION. Let R(z) be the algebra of rational forms over the real numbers; i.e., all
quotients p/q where p and q are real polynomials such that ¢ # 0 and with p/q = r/s if and only if
ps = qr. Then the following hold:

(i) The map R(z) — C#(J) sending each rational form to the associated continuous function
s 1 —1.

(i) The algebra C#(J) is a vector space over the field R(x).

Proof. Clearly the map from R(z) to C#(J) sends sums to sums and products to products.
In particular, it is a linear transformation of vector spaces over the real numbers, and therefore
by standard results in linear algebra the proof of (i) reduces to showing that the kernel is equal
to {0}. However, if p(z)/q(z) = 0 for all but finitely many z € J, then multiplication by the
nonzero polynomial g shows that p(z) is also equal to 0 for all but finitely many x € J. Since the
complement of a finite set in J is infinite and nonzero polynomials have only finitely many roots,
it follows that p must be the zero polynomial, which means that f must also be equal to zero.

The truth of the second conclusion follows immediately from the standard rules of algebra
which apply in C#(J).m

The preceding leads to the following abstract characterization of algebraic functions.

COROLLARY. In the setting above, a function is algebraic if and only if it is the root of some
polynomial with coefficients in R(z).m



I.2: Exponential functions

The first proposition of the previous section leads directly to a proof of the following (expected)
conclusion.

THEOREM. Let a # 0 be an arbitrary real or complex number. Then the function e** is
transcendental over an arbitrary open interval J.

Proof. We need to show that for all positive integers N the functions 27 exp(kaz), where
0 < j,k < N are linearly independent over J.

This follows immediately from basic facts about solutions to homogeneous linear differential
equations with constant coefficients. All the functions described above are solutions to the equation

DN*YD — )N (D — 20)"+1.(D - No)N Ty = 0

and standard results about Wronskians for such solutions show that the family described in the
previous paragraph is linearly independent on an arbitrary interval J. Further details on these
points appear in the book by Trench cited in the references.n

1.3 : Sines and cosines

We would like to prove an analogous result for sine and cosine functions, where we shall now
assume that the interval J is bounded. In order to prove this we need some general comments
about trigonometric identities for powers of sinz and cos z.

It is well known that sin® z and cos* z are (finite) linear combinations of the functions sinnz
and cosmzx for m,n < k. We shall prove these assertions here, both for the sake of completeness
and because we need a small amount of specific information about the formulas themselves. In
order to do things quickly we shall use the standard identity

e = cosz + isinz
and the corresponding expressions for sinz and cos z as complex linear combinations of e*?2.

In particular, the identities in the preceding sentence imply that
X —iz\ k k—1
- 1 ; ; 1 k .
Sink r = (%) — W . I:e’l«kw + (_1)’96—@]‘335] + . ( ) (_1)261(22—19)35

Af(z) + B(z)

where A is a nonzero constant, the function f(y) is given by cos ky if k is even and sin ky if k is odd,
and B(x) is a linear combination of terms involving sin pz and cos gz where p and g are integers in
the interval [2 — k,k — 2]. A similar expansion holds for cos* z except that the lead term is always
a nonzero constant times cos kz.

We now need to show how one can use such formulas to prove that the functions z? sin? z and
™ cos™ x are linearly independent for 0 < m,n,p,q < k.
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Let V, be the set of all trigonometric functions that are linear combinations of sin px and cos gz
for 0 < p,q < r. By the preceding discussion we have that

sint'z = A-f((r+1)z) + F.()

cos" Mz = A.cos(r+ 1)z + G(z)
where F,.,G,. € V,.

We shall now apply the preceding observations and the methods of the previous section to the
sine and cosine functions.

THEOREM. For each open interval J, the functions sinz and cos z are transcendental on J.

Proof. In this case a Wronskian argument shows that the set of all products of the form
xP sin gz and ™ cos nz, where 0 < m,n,p, q < n, is linearly independent (after eliminating obvious
redundancies). Standard computations show that these functions form a basic set of solutions for
the following differential equation:

DtY(D? - 1)t (D? -2 (D )Ty = 0

The preceding discussion and the trigonometric identities provide the raw material for proving
that the sets
{ z”sin?2 | 0< p,q,< N }

{2Pcos?z|0<p,qg,<N }

are linearly independent, but some additional notation is also necessary. Let H,, ,, v(z) = 2™ T (nz)
where T'(u) = sinwu or cos u, and order these functions lexicographically with cos u preceding sinu.
Similarly take the lexicographic orderings on the functions K,, ,(z) = 2™ sin" z and Ly, ,(z) =
z™ cos™ z. Define Wy, ,, to be the subspace spanned by the functions H,, , r(z) where both p < m
and ¢ < n, and in addition either p < m or ¢ < n. Then the trigonometric identities imply that
K., n does not lie in the subspace W,, ,, but all functions which precede it in the sequence do lie
in that subspace. This means that the set of functions K, , up to and including K,, , is linearly
independent for all m and n. The same considerations apply to show that the set of functions L, ,
up to and including L, 5, is linearly independent for all m and n. Thus it follows that both of the
sets of functions displayed above are linearly independent.n

I.4: Restriction principle

In this section we shall prove a result stated in Section 1 regarding conditions under which one
can detect whether a function is algebraic by restricting to a subinterval. Once again we introduce
some formalism.

Definition. Let J be an open interval in the real numbers. A function f defined on J is said to
be real analytic if for each point a € J there is an interval (a —r,a+7) C J such that f|(a—r,a+7r)
has a convergent power series expansion of the form Y, cx(z — a)*.

Here are some basic properties of real analytic functions that we shall use.
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FACT 1. If f has a convergent power series expansion on an interval of the form (b— h,b+ h),
then f is real analytic on the latter interval.

This may seem tautological but it is not. One needs to show that for each a in the interval
one can find a convergent power series expansion in terms of powers of (z — a). The most direct
approach is simply to exploit the identity

e
z —b)* z—a)(a—br*.
@0 = > ()@=t

£=0

Formally this yields an expansion in terms of powers of (z — a) from the expansion in terms of
powers of (z — b). It is then necessary to prove that the formally derived power series actually has
a positive radius of convergence.m

FACT 2. If f is given as in the previous statement and P(x,y) is a polynomial in two variables,
then

also has a convergent power series expansion on the interval (b— h,b+h) and hence is real analytic
on that interval.

Once again it is not difficult to figure out what the power series for the function g(z) should
be, but after doing so it is necessary to prove that it works.m

FACT 3. If f is once again given as in the previous statements and f is not identically zero,
then the zeros of f are isolated; in other words, if f(a) = 0 then there exists some § > 0 such that
[ is never zero on (—4,a) U (a,d).

The first key step in verifying Fact 3 is to show that if f(a) = 0 then there exists some § > 0
such that either f is never zero on (—d,a) U (a,d) or else f is identically zero on that interval. —
One proves this by looking at a power series expansion at a on some interval of radius equal (say)
to r. If all the coefficients of the powers of (x — a) vanish, then it follows that f is identically zero
on the interval. If some coefficient does not vanish, then one can use Taylor’s Formula and the
infinite differentiability of f to show that for all points in some small subinterval of radius (say) 9,
the only solution to the equation f(z) =0 is z = a.

The argument in the preceding paragraph shows that either a is an isolated zero of f or else
there is an open subinterval Jy containing a such that f = 0 on all of a. To complete the argument,
it is necessary to prove that the second alternative implies f = 0 at all points of the original interval.

It is easy to do this with a few tools from point set theory but very difficult otherwise, so we
shall give the proof using concepts from point set theory; a reader who wishes to accept this step
without proof may do so because we shall not use it subsequently. The proof is based upon the
following property of an open interval which follows from connectedness (compare Rudin, Principles
of Mathematical Analysis):

It is not possible to split an open interval into two nonempty pairwise disjoint
open subsets (i.e., each point lies in an open interval entirely contained in one of
the subsets).



Let J be the interval on which f is defined, and let B be the set of points z such that at least one
of the quantities f*)(z) # 0 for some k > 0. By the continuity of f and all its derivatives, this
set is open. Let C' be the set of points where all the above quantities vanish. By the observations
of the preceding paragraph, this set is also open, and by construction it is disjoint from C. If
the second alternative in the previous paragraph holds, then C is nonempty, and therefore by the
connectedness property of J it follows that C' = J, which means that f = 0 everywhere.s

We are now ready to prove the result stated in Section 1.

PROPOSITION. Suppose that f and J are as above such that f is defined at every point of J,
and assume in addition that near each point a € J it is possible to express f as a convergent power
series in powers of x — a. Then f is algebraic if and only if the restriction to some subinterval J'
1s algebraic.

As noted in Section 1, if f is algebraic then it follows that the restriction to every subinterval
is algebraic.

Proof. Let J’ be the interval on which f is algebraic, and let P be a polynomial in two variables
such that

0 = P(x, f(a;))

for all z € J'. As noted in Fact 2, the expression on the right hand side defines a real analytic
function on all of J, and we have seen that it is zero on J’. Therefore by Fact 3 this function is
equal to 0 at all points of J. This proves one direction of the implication. The other was established
in Section 1.m

Example. Consider the function (z + |z|)e®. The restriction of this function to (—1,0) is
equal to 0 and hence is algebraic. On the other hand, the restriction to (0, 1) is equal to 2ze®, and
this function is transcendental (if it were algebraic, then e” would also be algebraic. Therefore one
cannot generalize the proposition to arbitrary continuous functions. There are similar examples for
functions with & continuous derivatives, where k is an arbitrary positive integer (and there are even
infinitely differentiable examples, but they are a little more complicated to construct and analyze).



II. More advanced methods and examples

In this part of the notes we shall approach the topic from a slightly more advanced standpoint
using algebraic tools from the theory of extension fields and some Galois theory. One application
will be proofs that the remaining trigonometric functions, the inverse trigonometric functions, and
the logarithmic functions are transcendental. Another will involve the relation between algebraic
functions and the radical functions described in Part I. In particular, we shall define an infinitely
differentiable algebraic function that cannot be expressed in terms of addition, subtaction, multi-
plication, nonzero division, and taking n*® roots for arbitrary positive integers n.

II.1: Some general observations

At the end of Section 1.1 we mentioned that the space C#(.J) of functions under consideration
is a vector space over the field R(z) of rational forms or functions in the indeterminate z with
respect to the usual algebraic operations. One can characterize the algebraic functions very simply
in terms of this vector space structure.

PROPOSITION. A function f € C¥#(J) is algebraic if and only if the span of the k-fold power
functions f* for k > 0, viewed as an R(z)-vector subspace, is finite-dimensional.

Note on terminology. =~ Throughout Part II we shall notation like f* to denote the k-fold
algebraic product (and not a k-fold composite).

Proof. A nontrivial polynomial identity

0 = P(x, f(:c))

implies that some function f™ is a linear combination of the lower powers, and by induction every
higher power is also a linear combination of these lower powers. Thus the subspace spanned by the
powers of f is actually spanned by the powers 1, f,...f™ 1. Conversely, if f is algebraic, then a
polynomial identity of the form

an(z)f(2)" + ... + a1(z)f(z) + aoz) = 0 (n > 0)
with a,, # 0 will imply that f™ is a linear combination of the lower powers of f with coefficients in
R(x)-

COROLLARY 1. Let f be as above, assume f is algebraic, and suppose further that g is a
polynomial in f. Then g is also algebraic.

Proof. Let W be the subspace spanned by the powers of f and let W; be the subspace spanned
by the powers of g. By the proposition we know that W is finite-dimensional, and therefore its
subspace W is finite-dimensional, which in turn means that g is algebraic.a

COROLLARY 2. Let f be as in the proposition, and let g be a nontrivial polynomial such that
gef is algebraic. Then f is algebraic.



Proof. Let F be the subfield generated by the powers of g° f, so that F is finite-dimensional over
R(z) by the hypothesis. If K is the subfield generated by E and the powers of f, then gof € FE
implies that K is finite-dimensional over E. By the product formula for iterated extension fields,
it follows that K is also a finite-dimensional extension of R(z). By construction it contains all the
powers of f, and therefore the subfield generated by the latter is a finite-dimensional extension of
R(I)l

The following change of variables formula is also useful for certain purposes.

PROPOSITION. Suppose that f is a continuous strictly increasing function on the interval J
and that g = f=1. If f is algebraic on J, then g is algebraic on f(J).

Proof. Suppose we have

0 = Pz, f(z)) .
Then we also have
0 = P(g(y),y) -

Conversely, if the second equation is true then so is the first.m

COROLLARY. The natural logarithm function (and in fact the logarithmic function for an
arbitrary nontrivial base) is transcendental).

This follows immediately from the proposition and the fact that the natural logarithm and
exponential functions are inverse to each other.m

I1.2: The remaining trigonometric functions

The results of the preceding section will be used to prove that the remaining four basic trigono-
metric functions and their standard inverses are all transcendental.

PROPOSITION. The functions secz and cscx are transcendental.

Proof. Suppose that 0 = P(z,secz) = Zj’k cij T’ sec® z. If we multiply through by some large
power of the cosine function this becomes

0 = E cij ol cosMF
gk

and hence the function cos z would be algebraic if sec z were algebraic. Similar considerations work
for the cosecant function.m

PROPOSITION. The functions tanz and cot x are transcendental.

Proof. Once again, if we can prove this for the tangent function the same sort of proof will work
in the other case.

If f(x) = tanz were algebraic, then the same would be true for 1 + f(z)? = sec? z. However,
we have just shown that secx is transcendental, and hence the same must be true for its square,
and consequently it follows that tan x must be transcendental.m

COROLLARY. The inverse trigonometric functions are all transcendental.
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Proof. Apply the final proposition from the previous section.s

I1.3 : Radical functions and algebraic functions

The purpose of this section is to prove the following.

THEOREM. There is an infinitely differentiable algebraic function f : R — R such that f is
not a radical function.

This example is related to the fact that there is no quintic formula giving the roots of an
arbitrary fifth degree equation in terms of the four basic arithmetic operations and extractions of
roots.

We begin by formalizing the notion in the final clause of the previous sentence.

Definition. A function f is a radical function if it lies in a finite extension of R(z) by radicals
inside C#(/J).

It follows immediately that radical functions are algebraic functions. The point of this section
is that the converse is not true.

BASIC EXAMPLE. Let f(z) = z° + 2 + z. The derivative of this function is 5z* + 322 + 1,
which is positive, and hence f is always strictly increasing. Taking limits as x — £ 0o we see that
f maps R onto itself. Therefore there is an inverse function g, and hence by the final proposition
of Section II.1 this inverse function g = f~! is algebraic.

If g were a radical function then one could express the unique solution to g(y) = —1 in terms
of the standard four arithmetic operations and extraction of roots. In the terminology of Galois
theory, the equation h(z) = z° + 3 + x + 1 would be solvable in radicals. We shall use Galois
theory in a fairly standard fashion to show this is impossible.

The standard method for showing such an equation is not solvable by radicals is fairly clas-
sical and can be found in Section 61 of the second edition of van der Waerden’s Modern Algebra.
According to the methods developed there, it is only necessary to prove the following result:

CLAIM. The polynomial h(z) = z° + 23 + x + 1 is irreducible over the integers modulo 3.

In order to prove this is irreducible over the ring Z3 of integers mod 3, it suffices to show it has
no linear or quadratic factors. Linear factors correspond to roots over Zg, and it is easy to check
there are no such roots, so all we have to do is eliminate the possibility of quadratic factors. We
shall do so in an elementary but slightly tedious manner.

There is a field Fg with exactly 9 elements which contains Z3 and also contains a square root
i of —1. This is true because z2 + 1 has no roots in Zs. If there are irreducible quadratic factors,
the theory of finite fields implies that there must be a root for hA(z) mod 3 in the field Fy. Every
element in Fg is uniquely expressible in the form a + b¢ where a,b € Z3. One can check directly
that none of these elements can be a root of the polynomial A(z) reduced mod 3; an argument of
this sort is definitely not elegant, but it works and does not require additional digressions.m
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