
 149 

 

  

I I I.7 : Areas and volumes 

 
 
Most upper level undergraduate textbooks in geometry do not cover these topics, but for 
the sake of completeness we shall explain how they fit into the setting of these notes.   
Our axioms for area theory will be adapted from those presented by the School 
Mathematics Study Group in the reference given below; a closely related, but somewhat 

different, approach to area theory in classical geometry is given in Chapters 13 – 14 and 

21 – 22 of the previously cited book by Moïse. 
 

School Mathematics Study Group, Mathematics for High School:  Geometry, Parts 

1 and 2 (Student Text ), Yale University Press, New Haven and London, 1961. 
 

Here are some online references that may also be helpful: 
 

http://en.wikipedia.org/wiki/Area_(geometry)     
 

http://www.gomath.com/htdocs/ToGoSheet/Geometry/area.html 
 

http://en.wikipedia.org/wiki/Area 
 

When we think of areas in the plane, we generally think of them as being defined for 
certain types of sets called closed regions; in particular, they generally have 
boundaries given by reasonable curves and contain these boundary curves.  For 

example, a closed triangular region should consist of some triangle ����ABC along with its 
interior, and similarly for other convex polygons.  It will be convenient to make this 
intuitive notion precise. 
 

Definition.  Suppose that A1, … , A n  are the vertices of a convex polygon (taken in 
that order).  The closed region bounded by the convex polygon (or its closed 
convex polygonal region) is given by the intersection of the closed half planes   

H
#( A k A k + 1; A k + 2),  with the numbering conventions of Section I I I.3.  We shall often 

say that the convex polygon is the boundary of the closed convex polygonal regions 
and that the closed region is bounded by the polygon.  We shall denote the closed 

convex polygonal region associated to  A1, … , An  (in that order)  by  ����A1 …  An . 
 

Ordinary geometrical figures suggests that the closed region  ����A1 … An   is the union of 

the convex polygon  A1 …  An  with its interior (as described in Section I I I.3).  We shall 

begin by verifying this intuitive idea by means of vector geometry. 
 

Coordinate interpretation.  Suppose we have a convex polygon as above and its 

interior is defined by the strict linear inequalities u i · x i   >   b i ,   where  j  =  i + 1 , … ,   

i  +  n  –  2 .  The associated closed half planes are then defined by the corresponding 

non – strict linear inequalities u i · x i   ≥   b i .   The latter imply that  ����A1 … An   is 

defined by the inequalities and in turn leads to a more or less expected result relating the 

set  ����A1 … An   and the interior of   A1 … An.  
 

Proposition 0.   If   A1, … , An  (in the given order) are as above, then  ����A1 … An   is 

equal to the union of the convex polygon  A1 … An  and its interior. 
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Proof.   Since the interior is defined by the strict inequality of the form  u · x  >  b  and 

the closed polygonal region is defined by the non – strict inequalities  u i · x i   ≥   b i,  it 
follows that the interior of the polygon is contained in the closed polygonal region.   Next, 

we claim that every vertex lies in the latter set.  To see this, let  a  j  be a vertex.  Then by 

the definition of convex polygon we know that  a  j  ∈∈∈∈  H
#(a j – 1 a j ; a j + 1)  for  j  =  i + 1, 

… ,   i + n – 2  and also  
 

a  j ∈∈∈∈ a j – 1 aj   ∩∩∩∩   aj a j + 1 ⊂⊂⊂⊂  H
#(a j – 1 a  j ; a j + 1)   ∩∩∩∩   H

#(a  j aj + 1 ; a j + 2) 
 

so that  a  j  must belong to each of the intersecting sets which appear in the definition of 

����a1 … an .   Finally, since the latter is a convex set, it also follows that the entire closed 

segment  [a j  aj + 1]  must be contained in ����a1 … an ,  completing the proof that the 
latter contains the original convex polygon. 
 

We must now show that every point of  ����a1 … a  n   must either lie on the convex 

polygon or its interior. Suppose we are given a point of ����a1 … a n  which does not lie in 

the interior.  Then it follows that the point x must lie on one of the lines  a  j a  j + 1,  and it 

will suffice to show that  x  must lie on the closed segment  [a j a  j + 1].  —  Suppose 
that  x  lies on the line but not on the closed segment.  Then the basic results on 

betweenness imply that either  a  j ∗ a  j + 1∗x  is true or else x∗ a  j ∗ a  j + 1  is true.  In the 

first case it would follow that x and a j would lie on opposite sides of the line  a j + 1 a j + 2, 

which contradicts the definition of  ����a1 … an.    Similarly, in the second case it would 

follow that  x  and  a  j + 1  would lie on opposite sides of the line a j – 1 a  j,  which also 

contradicts the definition of  ����a1 … a n.    Thus the only points of the latter which lie on 

the line  a j  a  j + 1  are the points which lie on the closed segment joining these two 

points, and this completes the proof of the proposition.� 
  

Extensions of congruences.  The following result will be helpful for deriving area 

formulas: 
 

Theorem 1.  (Classical Congruence Extension Property)   Suppose we are given 

����ABC   ≅≅≅≅   ����DEF.  Then ����ABC  is also congruent to ����DEF. 
 

Proof.    By the results of Section I I.4, there is a Galilean transformation  T  which 
sends  A,  B  and  C  to  D,  E  and  F  respectively; furthermore, this transformation 

sends  ����ABC  to  ����DEF.   We shall use the fact that  T  preserves barycentric 
coordinates to prove that  T  also sends ����ABC  to ����DEF.  Let  P  be a typical point in 

RRRR
2
, and use barycentric coordinates to expand  P  in the form   xA  +  yB  +  zC,  

where  x  +  y  +  z   =   1. By definition,  P  lies in  ����ABC  if and only if  x,  y,  and   z  

are all nonnegative.  Since  T(P)   =   xD  +  yE  +  zF,  it follows that  T(P)  lies in 
����DEF  if and only if the same condition is satisfied.  Therefore  T   maps ����ABC  to  

����DEF  as required.� 
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Axioms for plane area 
 
 

We are going to need two additional undefined concepts to begin.  The first is a family of 

plane measurable subsets  M (RRRR
2
),  often abbreviated to  M,  with the following 

simple properties: 
 

Axiom PM – 1:   The family M contains all closed interiors of convex polygons. 
 

Axiom PM – 2:   The family M is closed under taking finite set – theoretic unions, 

finite intersections and set – theoretic differences. 
 

We shall be particularly interested in the bounded subsets of M;  namely, those that are 

contained in a solid square of the form  – a  ≤   x,  y   ≤   a  for some real number  a. 
 

The second undefined concept is an area function A , which defines for each bounded 

subset  S  in  M  a nonnegative real number  A(S)   called the  area  of  S,  and this 

function  A  is assumed to have the following properties: 
 

Axiom PM – 3  (Normalization condition) :  The area of a rectangular region 

����ABCD  whose sides have lengths p and q is equal to the product  pq. 
 

This axiom can be weakened at the expense of some extra work, but clearly we need to 
know something about the area of at least one nontrivial figure in order to get started. 
 

Axiom PM – 4  (Areas of collinear and concyclic sets) :   The area of a 

bounded measurable subset of a line or circle is equal to zero. 
 

This is one way of ensuring that familiar one – dimensional subsets have zero areas. 
 

Axiom PM – 5  (Invriance under congruence) :   If two bounded subsets of  M  

are congruent,  then their areas are equal. 
 

This principle is used frequently to help derive area formulas in elementary geometry. 
 

Axiom PM – 6  (Finite Additivity Postulate) :     If a bounded set  S  in  M  is 

the union of two measurable sets   S1  and  S2 ,  and the sets   S1  and  S2   intersect in a 

set whose area is equal to zero, then the area of  S  is the sum of the areas of  S1 and 

S2. 
 

The final axiom is illustrated by the drawing below.  Specifically, the area of the shaded 
region is given by adding the areas of the darker shaded region to the left and the lighter 
shaded region to the right.  The intersection of these closed regions is contained in the 
vertical line in the middle, and this intersection has area equal to zero because it is 
contained in a line. 
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Our next goal is to explain why these axioms yield the usual formulas for the areas of 

familiar objects.   However, before we do so we need to digress and state some general 
properties of closed polygonal regions. 
 
 

Decompositions of regular polygons 
 
 

Classical derivations of area formulas for familiar plane figures often depend upon 
cutting a closed convex polygonal region up into smaller  nonoverlapping  regions of 
the same type.  Specifically, we are generally given a closed convex polygonal region 
which can be decomposed into a finite union of smaller such regions associated to 

polygons  Pm  such that the intersection of any two is a common edge of two bounding 
polygons or a common vertex of two or more bounding polygons.  Several examples are 
depicted below.  Note in particular that many of the smaller polygons can share  a given 
vertex and that one cannot draw any conclusions about the number of sides in the large 
polygon from the number of sides in the smaller polygons and vice versa. 

 

 

 
 

 

 

     
Of course, the simplest situations involve convex polygons that are split into two pieces 
by a line.  The following result describes such situations. 
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Theorem 2.  (Folding and Cutting Principle)  Suppose we are given a convex polygon 

of the form  A1 … An, and suppose that  B  and  C  are points of  A1 … A n  which do 

not lie on the same edge of the polygon.  Then the following hold: 
 

1. If  B  is the vertex  A1 and  C  is the vertex  Am where m is not equal 

to 1 or n, then the sets  { A1, … , Am}  and { Am, … , An, A1}  are 

the vertices of convex polygons  A1 … Am   and   A m … A n  A1   

such that ����A1 … Am  ∪∪∪∪ ����Am … An A1 =  ����A1 … A  n   and  

����A1 … Am ∩∩∩∩ ����A   m … An  A1 = [A1 A  m ]. 
 

2. If  B  is the vertex  A1  and  C  lies on the open segment  (A  m   A  m + 1)  

where m is not equal to 1 or n, then the sets  { A1, … , Am, C }  

and  {C, Am + 1, … , A n, A1 }  are the vertices of convex polygons 

such that  ����A1 … A m C    ∪∪∪∪  ����CA  m + 1 … A  n A1 = ����A1 … A  n  

and ����A1 … A m  C   ∩∩∩∩  ���� C A  m + 1 … An  A1 = [A1 C]. 
 

3. If  B  lies on the open segment  (An  A1)  and  C  lies on another 

open segment of the form  (A m  Am + 1)  where  m  is not equal to  1,  

then the sets { B, A1, … , Am, C }  and {C, Am + 1, … , A  n, B}  are 

the vertices of convex polygons such that we have ����BA1 … Am  C   

∪∪∪∪ ����C A  m + 1 … An B = ����A1 … A n  and also  ���� BA1 … Am  C   

∩∩∩∩  ���� C A m + 1 … An B = [BC]. 
 

The name “folding and cutting” is used because this construction corresponds to 
taking a closed polygonal region cut from a sheet of paper, folding it along some line 
which passes through the interior of the polygon, and cutting the polygonal region into 
two pieces along the fold.  Here are drawings to illustrate the three cases when there are 
four original vertices.   

 
Note that we can obtain similar results if  B  is some vertex other than  A1  or  B  lies on 

an open segment other than  (A n A1).  For example, if we permute the roles of the  A k  

cyclically, with  k  going to  k + 1 if  k  <  n  and  n  going to  1, then we obtain similar 

conclusions if  B  =  A n  or  B  lies on  (A n – 1 A n),  if we do this twice we get the same if  

B  =  A n – 1  or  B  lies on  (A n – 2 A n – 1),  and likewise if we do this more than twice. 
  
The second result involves splitting a regular polygon into pieces using an interior point. 
 

Theorem 3.  (Star Decomposition Principle)  Suppose we are given a convex polygon 

of the form  A1 … A n,  and that  Q  lies in the interior of  A1 … A  n.  Then the closed 
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polygonal region  ����A1 … A n  is the union of the regions  ����Q A1A2,  …  , ����Q An –  1 A n,  

and  ����Q A n A1.  The intersection of two such closed regions is either a common edge of 

two triangles or the one point set  { Q }. 
 

The drawing below depicts a typical example: 
 

 
 

Note on proofs.  It is possible to prove these results with the techniques developed in 
this course, but the proofs are long and tedious, and since the arguments do not shed 

much light on the central questions of this section, the details will be omitted.� 
 
 

Derivations of some area formulas 
 
 

Aside from the area formulas for rectangles, the next most basic examples are triangles.  
We begin with right triangles. 
 

Theorem 4.  Suppose we have  ����ABC  such that  |∠∠∠∠ ACB|  =  90°  with  d(A, C)  =  

b  and   d(B, C)  =  a.   If   �ABC  is the region bounded by  ����ABC,  then   A(����ABC)   
=  ½  ab.   

 
 

Proof.    Let  L  be the unique line through  A  that is parallel to  BC, and let  M  be the 
unique line through  B  which is parallel to  AC.  Since lines perpendicular to intersecting 

lines will intersect, it follows that  L  meets  M  in some point  D; it follows that  L  =  AD  

and  M  =  BD.   Furthermore, by the parallelism and perpendicularity conditions we can 

also conclude that  L  is perpendicular to  AC  and  M  is perpendicular to  BC.  In 
particular, since  L  and  BC  are parallel and  BC  is perpendicular to  M, it also follows 

that  L  is perpendicular to  M.  Since  L  =  AD  and  M  =  BD,  it follows that  AD  ⊥⊥⊥⊥  
BD.  Therefore we have shown that  B,  C,  A  and  D (in that order) form the vertices 

of a rectangle!! 
 

By the normalization axiom, the area of the closed polygonal region  S  =  �ACBD 

bounded by the rectangle  ���� BCAD  is equal to   ab.    The first case of the Cutting and 
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Folding Principle now implies that   �ACBD = �ACB ∪∪∪∪ �ADB   and   �ACB ∩∩∩∩ 

�ADB  =  [AB].  This means that  
 

A(�ACBD)    =    A(�ADB)  +  A(�ACB). 
 

Furthermore, since the opposite sides of a rectangle have equal length we have  d(A, D)  

=  d(B, C)  =  a   and   d(B, D)  =  d(A, C)  =  b.   Combining these with the 

assumption that  |∠∠∠∠ACB|  =  |∠∠∠∠BDA|  =  90°, we conclude that  ����ACB    ≅≅≅≅    

����BDA .   By the Classical Congruence Extension Property mentioned above, we also 

know that   �ACB  is congruent to  �BDA.  Thus we also have  A(�ADB)   =   

A(�ACB).  Combining the two equations above, we obtain  A(�ACBD)   =    

2 A(�ADB),  and since the left hand side is equal to  ab  it follows that  2 A(�ADB)  
must be equal to  ½ ab.� 
 

The next step is to generalize the area formula to arbitrary triangles. 
 

Theorem 5.  Suppose we are given  ����BAC  and that  D  is the foot of the perpendicular 

from   B  to  AC.  Let  d(A, C)  =  b  and  d(B, D)  =  h.  Then  A(�ABC)  =   ½  bh. 
 

Proof.   We must consider several cases depending upon how  D  is related to  A  and  

C.   Specifically, the possibilities are  D∗A∗C,  D = A,  A∗D∗C,  D = C,  and  A∗C∗D.  

The first and fifth correspond to each other if we reverse the roles of  A  and  C, and the 
first and fifth correspond to each other if we reverse the roles of  A  and  C,  so it suffices 
to consider the last three cases. 
 

 

The case  C =  D  is shown in the previous theorem.  Suppose now that  A∗D∗C.  By  

the second part of the Cutting and Folding Principle we have  �ABC  =  ����ADC ∪∪∪∪ 

����BDC  and  ����ADC ∩∩∩∩ ����BDC  =  [BD].  This means that  
 

A(����ABC)    =    A(����ADC)   +   A(����BDC)  = 
 

½  d(A, D) h   +   ½  d(D, C) h    =    ½  ( d(A, D)  +  d(D, C) ) h. 
   

Since  A∗D∗C  holds, the term inside the brackets is equal to  d(A, C)  and hence the 

area of  �ABC  is equal to  ½  d(A, C) h.  Finally, since the term on the right is equal to  

b, it follows that  A(�ABC)    =    ½  bh.   
 

Finally, suppose now that  A∗C∗D.  By the second part of the Cutting and Folding 

Principle we now have  �ADB  =  ����ACB ∪∪∪∪ ����CDB  and  ����ACB ∩∩∩∩ ����CDB  =  [CD].  
This means that 
 

A(����ADB)    =    A(����ACB)  +  A(����CDB)   =    A(����ACB)  +  ½  d(D, C) h   
 

However, by the previous theorem we also have, and if we make this substitution we 
obtain the equation 
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½  d(A, D) h    =    A(����ADB)    =     A(����ACB)   +   ½  d(D, C) h 
 

which we may rewrite as   
 

A(����ACB)   =   ½  d(A, D) h  –  ½  d(D, C) h   =   ½  (d(A, D)  –  d(D, C) ) h. 
 

Since  A∗C∗D  holds, the term inside the brackets is equal to  d(A, C)  and hence the 

area of  �ABC  is equal to  ½  d(A, C) h.  Finally, since the term on the right is equal to  

b,  it follows that   A(�ABC)   =   ½  bh.  This completes the verification of the area 

formula in all cases.� 
 

One can also find the area of   �ABC  in terms of the lengths of its sides using a 

formula named after Heron (or Hero) of Alexandria (10 A.D. – 75 A.D.). 
 

Theorem 6.  (Heron’s Formula)   Given  ����ABC, denote the lengths of its three sides 

by  d(B, C)  =  ab,  d(A, C)  =  b,  and   d(A, B)  =  c, and let   s  =  ½ (a + b + c).  
Then we have 

 

A(�ABC)   =   sqrt( s(s – a)(s – b)(s – c) ). 
 

Proof.    We know that at least two of the vertex angle measures for the triangle are less 

than 180°, and without loss of generality we might as well assume that both |∠∠∠∠BCA|  
and |∠∠∠∠CAB|  are less than 90°; the other cases will follow by interchanging the roles 

of  A,  B  and  C.   Let  D  ∈∈∈∈  AC be such that  BD  is perpendicular to  AC.  Then a 

corollary to the Exterior Angle Theorem implies that  D  lies on the open segment  (AC).   
 

 
 

Let   d(B, D)  =  h,  and let  d(A, D)  =  x,  so that   d(C, D)  =  b – x. The central idea 

will be to solve for  h  in terms of  s,  a,  b,  and  c  using the Pythagorean Theorem and 
some algebraic manipulations. 
 

Applying the Pythagorean Theorem to right triangles  ����ADB  and  ����BDC, we obtain 
the equations 
 

x
2
  +  h

2
   =   c

2
                  (b –  x)

 2
  +  h

2
   =   a

2
 

 

and if we solve for  h
2
  we see that  c

2
 –  x

2
   =  h

2
   =   a2

 –  b
2  +  2bx  –  x

2
.  

Adding  x
2
  to each side of this equation yields  c

2
  =   a

2
 –  b

2  + 2bx,  and if we solve 

this for  x  we find that   x   =   (c
2
 –  a

2  +  b
2
)/2b.   Substituting this back into the first 

equation we find that  
 

h
2
   =   c2 

–  x
2  

  =   c
2 
–  [(c

2
 –  a

2  
+ b

2
)/2b] 

2
. 

 

If  Q  denotes the area of  �ABC, then we know that  Q  =  hb/2, and therefore we 

have  
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Q 

2
    =    h2

 b
2/4    =    [4 c

2
b

2  
–  (c

2 
– a

2
 + b

2
)
 2] /16    = 

 

(2 a
2
c

2
 + 2 a

2
b

2
 + 2 c

2
b

2  
–  a

4  
–  c

4  
–  b

4) /16. 
 

The final expression for  Q 

2
  should look promising because it is symmetric in  a,  b  and  

c.   We must now see if we can to rewrite this expression more concisely.   The key to 
doing so is the following algebraic identity, which may be checked directly by expanding 
the right hand side:   
 

2 a
2
c

2
 + 2 a

2
b

2
 + 2 c

2
b

2  
–  a

2  
–  c

2  
–  b

2
    = 

 

(a + b + c)( – a + b + c)( a – b + c)( a + b – c) 
 

If we let   p  =   a  +  b  +  c  (the  perimeter  of the triangle), then we have  
 

(a + b + c) ( – a + b + c) ( a – b + c) ( a + b – c)   =     
 

p (p – 2a) (p – 2b) (p – 2c) 
 

and we may use these equations to write to write 
 

Q 

2
   =   p(p – 2a)(p – 2b)(p – 2c) /16. 

 

If we now write  p  =   2s, then the preceding equation becomes  
 

Q 

2
   =   p(p – 2a)(p – 2b)(p – 2c) /16    =     

 

2s(2s – 2a)(2s – 2b)(2s – 2c) /16   = 
 

16s(s – a)(s – b)(s – c) /16    =    s(s – a)(s – b)(s – c) 
 

and if we take square roots of both sides we obtain the area formula in the statement of 

the theorem.� 
 

Brahmagupta's_formula.   A remarkable analog of Heron’s Formula for cyclic convex 

quadrilaterals (i.e., the vertices lie on a circle) was discovered by the prominent Hindu 

mathematician Brahmagupta (598 – 670 A. D.).  Specifically, suppose that  A,  B,  C,  D 

are the vertices of a convex quadrilateral which all lie on some circle  ΓΓΓΓ,  denote the 

lengths of their sides by  a,  b,  c,  and  d, and let  s  be equal to  ½ (a + b + c + d).  
Then we have 

 

A(�ABCD)    =    sqrt ( s (s – a) (s – b) (s – c) (s – d) ). 
 

Further information on proofs for this result may be found at the following online sites: 
 

http://jwilson.coe.uga.edu/emt725/brahmagupta/brahmagupta.html 
 

http://en.wikipedia.org/wiki/Brahmagupta's_formula 
 

The next results are the area formulas for parallelograms and trapezoids.  Recall from 

Section I I I. 3 that if  L  and  M  are parallel lines and  N  =  AB  is a line which is 

perpendicular to  L  and  M   at   A  and  B  respectively, then the distance   d(A, B) 

depends only on   L   and   M ; in other words, if we are given any other  N*,  A* and  

B*  with the corresponding properties, then   d(A, B)   =   d(A*, B*). 
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Theorem 7.   Suppose that  A,  B,  C  and  D  form the vertices of a convex quadrilateral 

(in that order) such that  AB || CD.   Let  h  denote the distance from a point on one of 
these two lines to the other line. 
 

1. If   BC|| AD  (so that the quadrilateral is a parallelogram) and  b  =  d(A, B),  
then the area of  ����ABCD  is equal to   bh. 

2. If   BC  and  AD are not parallel (so that the quadrilateral is a proper trapezoid) 

such that   b1  =  d(A, B)  and  b2  =  d(C, D), then the area of  ����ABCD  is 

equal to   ½ ( b1 + b2)  h. 
 

Proof.    We first consider the case, in which the convex quadrilateral  ABCD  is 
assumed to be a  parallelogram.   

 
By our previously derived results on parallelograms, we have  d(A, B)  =  d(C, D)  and 

d(A, D)  =  d(C,B).  Since  d(B, D)  =  d(D, B), it follows that  ����ABD  ≅≅≅≅  ����CDB by 

SSS.   Therefore the Classical Congruence Extension Property and the invariance of 

area under congruence imply that   A(����ABD)  =  A(����CDB). 
 

By the first part of the Folding and Cutting Principle we have  ����ABCD  =  ����ABD ∪∪∪∪ 

����CDB  and  ����ABD ∩∩∩∩ ����CDB   =   [BD], so that  
 

A(����ABCD)    =    A(����ABD)  +  A(����CDB)   =   2 A(����ABD). 
 

Since  A(����ABD)  =  ½ bh, it follows that  A(����ABCD)  =  bh, as required in the case 

of parallelograms. 
 

Suppose now that the quadrilateral is a  trapezoid  with  AB || CD.  If  d(A, B)  =   

d(C, D)  then the quadrilateral is a parallelogram, so we might as well assume that the 
lengths of the opposite parallel sides are unequal.  Strictly speaking, there are two cases 

depending upon whether  d(A, B)   >   d(C, D)  or  d(A, B)   <   d(C, D),  but as usual 
we can extract the second case from the first by interchanging the roles of  A  and  B  

with those of  C  and  D  respectively.  As in the statement of the theorem, let  b1  =  

d(A, B)  and  b2  =  d(C, D).  

 
 

Let  E  =  D + B – A,  so that  A,  B,  E  and  D (in order) are the vertices of a 

parallelogram.  Since both  DE  and  CD  are parallel to  AB,  it follows that  DC  =  DE.  

We claim that  D∗C∗E  holds.  Since  CD || AB,  it follows that  C  =  D + k (B – A)  for 
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some scalar  k. Furthermore, since we know that  A,  B,  C  and  D  form the vertices of 

a trapezoid it follows that  C  lies in the interior of  ∠∠∠∠ DAB; in terms of barycentric 

coordinates, this means that  k  must be positive.  Therefore we have  
 

b2   =   d(C, D)   =   || C – D ||   =   k || B – A ||   =   kb1 

 

and since  b2   <   b1  it follows that   k   <   1.  Therefore we have the desired order 

relation  B∗C∗E. 
 

By the second part of the folding and cutting principle, we have  ����ABCE  =  ����ABCD 

∪∪∪∪ ����BCE   and   ����ABCD ∩∩∩∩ ����BCE  =  [BC].   Therefore we also have the equation 
 

A(����ABED)    =    A(����ABCD)  +  A(����BCE). 
 

By the previously established formula for parallelograms we know that   A(����ABED)  =  

b1h  and  A(����BCE)   =   ½ ( b1 – b2) h.  It follows that  
 

cA(����ABCD)    =    A(����ABED)  –  A(����BCE)   = 
 

b1 h  –  ½ ( b1 – b2)  h   =   (b1 – ½ b1 + ½ b2) h  =   ½ ( b1 + b2) h 
 

which is the formula stated in the theorem.� 
 

The final area formula in this section will cover  regular polygons.  In order to state this 
formula, we shall need some definitions.  The perimeter of an arbitrary convex polygon  

A1 … A n  is defined as usual to be the sum of the lengths of the sides: 
 

p    =    d(A1, A2)  +  …  +  d(A n  – 1, A  n)  +  d(A  n, A1) 
 

Proposition 8.   Suppose that  A1 … A n   is a convex polygon, and let  Q   be its center.  

For each  k  =  1, … , n  let  Ck  be the foot of the perpendicular from  Q  to  A k A k + 1 

(here  A n + 1  =  A1  by our usual numbering conventions).   Then all of the distances  

d(Q, Ck)  are equal. 
 

This common value is called the apothem (pronounced “AP – o – them” with all short 
vowels, the “th” as in “thin,” the heaviest accent on the first syllable, and a secondary 
accent on the last syllable). 
 

Proof.    By the description of regular polygons in Section I I I.3, we know that  
 

d(A1, Q)   =   d(A2, Q)   =   …   =   d(A  n, Q) 
 

and we also know that  
   

d(A1, A2)   =   …   =   d(A  n  – 1, A  n)   =   d(A  n, A1) , 
 

so that  SSS  implies  
 

����QA1A2    ≅≅≅≅    …    ≅≅≅≅    ���� A  n  – 1 A  n    ≅≅≅≅    ����Q A  n A1. 
 

Furthermore, all these triangles are isosceles triangles; therefore, if  ����Q Ak  A k + 1   is one 

of these triangles (with the standard convention if  k  =  n) and  Ck  is the foot of the 
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perpendicular from  Q  to  Ak  A k + 1,  then  Ck  lies on the open segment  (Ak Ak + 1)  and in 
fact is its midpoint (by the characterization of perpendicular bisectors).  Therefore we 

have  d(Ak, Ck)   =   ½ d(Ak, A k + 1)  for all  k,  and hence we also have  
 

d(A 1, C1)  =  …  =  d(A n  – 1, C n  – 1)  =  d(A n, C n). 
  

By  SSS  we now have  
 

����QA1C1    ≅≅≅≅     …    ≅≅≅≅    ����Q A n  – 1C n  – 1    ≅≅≅≅    ����QA  n C n 
 

and the latter implies the desired string of equations  d(Q, C1)  =  …  =  d(Q, C n  – 1)   =   

d(Q, C n).� 
 

Before turning to the area formula for regular polygons, we shall dispose of one step in 
the proof that is valid for an arbitrary convex polygon. 
 

Proposition 9.  Suppose that  A1, … , A n  are the vertices of a convex polygon (taken 
in that order), and let  Q  be a point in the interior of this polygon. Then we have  
 

A(����A1 … A n)   =   A(����QA1A2)  +  …  +  A(����Q A n  – 1A n)  +  A(����Q A  n A1) .  
 

Proof.   For  k  =  2, …, n  let  Xk  be the set  ����QA1A2 ∪∪∪∪ … ∪∪∪∪ ���� Q A k  – 1A k,  so that 

the Star Decomposition Property implies  Xk    =    X k  –  1 ∪∪∪∪ ���� Q A k  – 1A k    and    

X k  –  1 ∩∩∩∩ ���� Q A k  – 1A k    =     [Q A k  – 1].    By the additivity property we then have the 

recursive equations 
 

A(����Xk)   =  A(����X k  – 1)  +  A(����Q A k  – 1A k) 
 

and hence we have 
 

A(����Xk)   =  A(����QA1A2)  +  …  +  A(����Q A k  – 1A k) 
 

for  k  =  3, …, n.   In the drawing below we have  n  =  5,  and the region  Xn   is 

shaded in blue. 
 

 

Finally, we have  ����A1 … An   =     Xn   ∪∪∪∪  ����QAnA1  and  Xn   ∩∩∩∩  ����QAnA1   =    

[QAn]  ∪∪∪∪  [QA1].   Now the two closed segments on the right hand side have areas 

equal to zero, and they only have the endpoint Q  in common, and hence by the 

Additivity Property we know that the area of  [QAn]  ∪∪∪∪  [QA1]  is also equal to zero.  We 

can then apply the Additivity Property one more time to conclude that  
 

A(����A1 … An)     =    A(����Xn)   +   A(����QAnA1) 
 

and if we combine this with the previous equation and the Star Decomposition Property 
we obtain  
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A(����A1 … A n)    =    A(����QA1A2)  +  …  +  A(����Q A n  – 1A n)  +  A(����QAnA1) 
 

which is the formula in the statement of the theorem.� 
 

Theorem 10.  Suppose that A1, … , A  n are the vertices of a regular polygon (taken in 

that order).   If  p denotes the perimeter of this regular polygon and  a denotes its 

apothem,  then   A(����A1 … A n)   =   ½  pa. 
 

Proof.  Let Q be the center of the regular polygon. If we now apply the previous result 
and the area formula for triangles, we find that  
 

A(����A1 … A n)    =    A(����QA1A2)  +  …  +  A(����Q A n  – 1An)  +  A(����Q AnA1)   = 
 

½ d(A1, A2) a  +  …  +  ½ d(A n  – 1, An) a   +   ½ d(A  n, A1) a   =  
 

½ [ d(A1, A2)  +  …  +  d(A n  – 1, An)  +  d(An, A1) ] a   =    ½  p a 
 

which is the formula stated in the theorem.� 
 

We have only discussed some of the material about areas from elementary geometry.  

Further information can be found in Chapters  13 – 14  and  21 – 22  of the book by 
Moïse as well as the following online sites: 

 

http://en.wikipedia.org/wiki/Area_(geometry) 
 

http://www.gomath.com/htdocs/ToGoSheet/Geometry/area.html 
 

 

Axioms for volumes 
 
 

We are not going to prove any theorems about volumes of figures in space, but we shall 
state the axioms and mention some complications that arise when passing from two to 

three dimensions.  Chapter 23 of Moïse contains statements and proofs of several basic 
results on volumes from a set of axioms which is basically equivalent to ours.  Since the 
final axiom for volumes involves plane areas, it will also be necessary to discuss the role 
of plane area in three dimensions.  
 

As in the planar case, the first thing we need is an undefined concept given by a family 

of measurable subsets  M (RRRR
3
),  often abbreviated to  M,  which is assumed to 

satisfy the following simple properties:  
 

Axiom SM – 1:   The family  M   contains all of the standard rectangular solids  S  

=   [a1, b1] × [a2, b2] × [a3, b3]  given by all points whose coordinates  ( x, y, z ) 

satisfy the three inequalities a1   ≤   x   ≤   b1, a2   ≤   y   ≤   b2,  and  

a3   ≤   z   ≤   b3 . 
 

Given a plane  P  in space and a point  X  not on  P,  the closed half space  H
#
( P; X)  

is defined to be the union of the  P  with the side of  P  (in space) containing  X. 
 

Axiom SM – 2 :   If  P is a plane in space and  S  belongs to  M,  then the 

intersection  S ∩∩∩∩ P belongs to  M , and if  X  is a point in space which does not lie on  
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P,  then the intersection  S ∩∩∩∩ H
#( P; X)  is in  M .   Furthermore, the family  M  P  of all 

subsets of  P which lie in  M  satisfies the previous axioms  AM – 1  and  AM – 2. 
 

Axiom SM – 3:   The family M  is closed under taking set – theoretic unions, 

intersections and differences. 
 

We shall be particularly interested in the bounded subsets of  M;  namely, those that 

are contained in some solid cubical region of the form   – k   ≤   x,  y,  z   ≤   k  for 

some real number  k. 
 

The next assumption states that planes in space have decent notions of area. 
 

Axiom SM – 4:   For each plane  P  there is an area function  A  P ,  which is defined 

on the bounded subsets of the family M  P  and satisfies the previous axioms  AM – 3 

through  AM – 6. 
 

This axiom implicitly contains a second undefined concept; namely, a family of area 

functions  A  P,  one for each plane  P; frequently the subscript is omitted to in order to 

simplify the notation.  The third undefined concept will be a volume function V,  which 

defines for each bounded subset  S  in  M   a nonnegative real number  V(S)  called the  

volume  of  S,  and this function  V  is assumed to have the following properties: 
 

Axiom SM – 5  (Normalization condition) :   The volume of the rectangular 

solid described in Axiom  SM – 1  is the product of the length of the sides; in other 

words, it is equal to  (b1 – a1) (b2 – a2) (b3 – a3). 
  

Axiom SM – 6  (Areas of coplanar sets) :   The volume of a bounded 

measurable subset of a plane is equal to zero. 
 

Axiom SM – 7  (Invariance under congruence) :   If two bounded subsets of  

M   are congruent, then their volumes are equal. 
 

Axiom SM – 8  (Finite Additivity Postulate) :   If a bounded set  S  in  M   is 

the union of two similar sets  S1  and  S2 ,  and the sets  S1  and  S2  intersect in a set 

whose volume is equal to zero, then the volume of  S  is the sum of the volumes of  S1  

and  S2. 
 

Each of the preceding four axioms is a direct analog of an axiom for plane area.   
However, we also need one further assumption: 
 

Axiom SM – 9  (Cavalieri’s Principle) :   Suppose that we are given two 

bounded measurable sets  S1  and  S2  and also a plane  P,  and suppose further that for 

every plane  Q   parallel to   P  the intersections  Q ∩∩∩∩ S1   and   Q ∩∩∩∩ S2  have equal 

areas.  Then   S1   and  S2   have equal volumes. 
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This is clearly different from any of the plane area postulates, so we shall try to (1) make 
it plausible and (2) explain why it is needed. 
 

Plausibility of Cavalieri’s principle.   As its name suggests, Axiom  SM – 9  reflects 

ideas advanced by B. Cavalieri (1598 – 1647); in fact, the key ideas were implicit in a 

work of Archimedes (287 – 212 B.C.E.) called  The Method ,  but he viewed it as a tool 

to discovering new facts rather than a genuine mathematical result, and this work was 

lost and essentially unknown for many centuries until its rediscovery in 1909.  
Historically the principle represents one step in the development of integral calculus, and 
it can be explained fairly simply in such terms.   In order to simplify the discussion, we 

shall assume that the plane  P  in Axiom  SM – 9  is the  xy – plane (in any case this 

can be achieved by changing coordinates).  A bounded measurable set  S  is then 
contained between two planes parallel to  P;  for the sake of definiteness we shall 

assume these planes are defined by   z  =  c   and   z  =  d   respectively, where    

c  <  d.   For each  t  such that  c  ≤  t  ≤  d,  let  Pt  be the plane defined by  z  =   

c  +  t (d –  c);  then each planar section  Pt ∩∩∩∩ S  is a bounded measurable subset of 

the plane,  and as such has an area  a( t )  =  A(Pt ∩∩∩∩ S);  if   Pt ∩∩∩∩ S  is empty then by 

convention  A(Pt ∩∩∩∩ S)  =  0.   An example is depicted below in which  S  is a cylindrical 

region in space whose axis is perpendicular to  P,  and we also assume it is the piece 

whose upper and lower boundaries are the parallel planes   z  =  0  and  z  =  1.  In this 

special case each of the slices  Pt ∩∩∩∩ S  is a closed disk (a circle together with its interior 

points), and the areas  a( t )  of the slices are equal to some fixed value  B. 
 

 
 

( Source:  http://www.mathleague.com/help/geometry/3space.htm ) 
 

For the particular cylindrical example in the illustration, the volume will be equal to the 

product of   B  with  d  –  c    =   1 .  More generally, a  “disk method”  argument as in 
ordinary integral calculus will strongly suggest that in more general cases, where the 

areas  a( t )  of the slices  Pt ∩∩∩∩ S  may vary with  t , then the volume of the solid should 

be given by the following integral formula:  
 

 
 

(See also http://www.mathwords.com/assets/movies/crossSectionsConcept.mov for an 
animated description.) 
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Similarly, if  S  is contained between two arbitrary parallel planes  z  =  c   and  z  =  d 

where  c  <  d,   then one obtains a similar integral in which the lower and upper limits of 

integration are   c  <  d   respectively.  Suppose now that we have  S1  and  S2  

satisfying the hypotheses of   SM – 9,  and define 
 

ak( t )   =   A(Pt ∩∩∩∩ Sk),         k  =  1, 2 
 

so that the hypotheses of  SM – 9  yield  a1( t )   =   a2( t ).    The preceding discussion 

suggests that   V(Sk)   is equal to the definite integral of  ak( t )  from   z  =  c   to    

z  =  d,  and one can assume that the limits of integration are the same in both 

instances.  Therefore the condition  a1( t )  =  a2( t )  implies that  V(S1)  and  V(S2)  are 

integrals of the same function.  But this means that  V(S1)  and  V(S2) should be equal.  

The figure below illustrates this principle for a solid pyramid and a solid cone such that  
the corresponding horizontal plane slices all have equal areas.  
 

 
 

http://media-2.web.britannica.com/eb-media/54/66654-004-99D4F14F.gif  
 

In fact, one can justify Cavalieri’s Principle rigorously using machinery developed 
in graduate level courses on measure theory.  We shall say more about the latter and 
its ties to elementary geometry at the end of this section. 
 

The need to assume Cavalieri’s Principle.  The assumption of something like 
Cavalieri’s Principle is not merely a matter of convenience, but on the contrary it is 
logically unavoidable.   Early evidence for this appears in classical Greek geometry 
writings on geometry, where proofs of basic theorems on volumes are often far more 
complicated and delicate than the proofs for theorems on plane areas.  There are 
numerous examples of this in the Elements, and the subsequent work of Archimedes 
took things much further; much of this work was based upon a method of exhaustion, 
which anticipated the use of limits but avoided doing so explicitly by means of very 
complicated proofs by contradiction.   When the logical foundations of classical geometry 
were analyzed in depth during the 19th century, there was renewed interest in questions 
concerning the need for ideas from integral calculus in the subject, and at the beginning 

of the 20th century M. Dehn (1878 – 1952) proved results confirming the need for some 
input related to limits and calculus in any mathematically complete treatment of even the 
most basic volume problems in elementary geometry (for example, finding the volumes 
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of pyramids with triangular bases).  There is some general information on Dehn’s results 
and related topics in the online reference listed below: 
 

http://en.wikipedia.org/wiki/Hilbert's_third_problem 
 

A detailed account of Dehn’s argument at the level of this course appears in Sections 

5.5 – 5.8 of the following book: 
 

J. Stillwell, Numbers and Geometry.  Springer – Verlag, New York, 1997. 
 

Finally, the site  http://www.csun.edu/~ac53971/courses/math623/spring02/dehn.html 
contains some additional background information on Dehn’s work and subsequent 
developments. 

 
 

Logical redundancy of area and volume axioms 
 
 

We have already noted that many advanced treatments of elementary geometry do not 
discuss axioms for area and volume.  One important reason is that mathematicians can 

define measurable sets, areas and volumes for  RRRR
2
  and  RRRR

3
  in a unique way such 

that the basic properties in the axioms are satisfied; this is generally done using the 

theory of Lebesgue measure and integration named after H. Lebesgue (“le – bague,” 

rhymes with “vague,” 1875 – 1941).  Virtually every graduate level text on real analysis 
or measure theory will provide highly detailed information on this subject.  Here are 
some online references which summarize the main points of the theory: 
 

http://en.wikipedia.org/wiki/Lebesgue_measure 
 

http://mathworld.wolfram.com/LebesgueMeasure.html 
 

There is also a considerably simpler theory of Jordan measure which is closely related 
to the theory of the Riemann integral in undergraduate real analysis courses and is 
adequate for the purposes of elementary geometry (but not for certain other classes of 
mathematical problems); this theory was developed somewhat earlier by C. Jordan 

(1838 – 1922), and the basic ideas of the subject appear in Chapter 22 of Moïse.  Some 
online references for Jordan measure are listed below: 

 

http://en.wikipedia.org/wiki/Jordan_measure 
 

http://mathworld.wolfram.com/JordanMeasure.html 
 

In particular, we note that suitable versions of Cavalieri’s Principle can be deduced as 
theorems in either of these measure theories.  Such versions of Cavalieri’s Principle are 
immediate consequences of Tonelli’s Theorem or Fubini’s Theorem; these results are 

due to L. Tonelli (1885 – 1946) and G. Fubini (1879 – 1943) respectively. The latter are 
extremely general versions of the standard advanced calculus principle for evaluating 

multiple integrals as iterated integrals, whose  2 – dimensional version is given as 

follows:   

If  f(x, y)| is a “suitably nice” function on a rectangle R  =  [a, b] × [c, d], then 
 

 . . . 


