
12.A. The proof of Cavalieri’s Principle

As indicated in history12.pdf, Cavalieri’s Principle is a powerful method for comparing the
volumes of two solids in 3-space. The purpose of this document is to discuss the steps needed
to prove this fact from the viewpoint of coordinate geometry and integral calculus. Although it is
possible to formulate and prove a fairly general version of Cavalieri’s Principle within the framework
of an undergraduate real variables course, setting everything up properly is a fairly delicate thing
to do, so we shall use the theory of Lebesgue integration, which is covered in basic graduate
level courses on real variables and has been the standard approach to working with integrals in
mathematics for the past hundred years. Many graduate level textbooks on real analysis or measure
theory describe everything that we need, and the following book is one specific recommendation:

R. Wheeden and A. Zygmund, Measure and Integral — An Introduction to Real

Analysis. Marcel Dekker, New York, 1977.

The formulation and proof of Cavalieri’s Principle involve a concept known as measurability
for subsets of n-dimensional coordinate space R

n. For our purposes it is enough to know that
most subsets one encounters in standard geometrical problems or constructs by standard methods
will be measurable. In more precise mathematical terms, if a problem asks for the area or volume
of a subset in R

2 or R
3 this subset is almost certain to be a finite union of subsets defined by

some collection of equations f(x) = a and inequalities g(x) ≤ b, where f and g are continuous,
which means that it is a closed subset of R

2 or R
3 (this means it is “closed under taking limits

of convergent sequences”). Basic results on measurable sets imply that every such closed subset is
measurable.

Cavalieri’s Principle turns out to be a simple corollary of a basic integral formula for the volume
of a 3-dimensional solid S in terms of the areas of the planar sections St formed by intersecting S

with the horizontal planes z = t, where t runs through all real numbers which are third coordinates
of points in S.

THEOREM. Let a < b be real numbers, and let S be a bounded measurable subset of R
3 which

lies between the parallel planes z = a and z = b. Assume further that for each t ∈ [a, b] the
plane section set St corresponds to a measurable subset of R

2 under the vertical projection sending
(x, y, t) to (x, y). Then we have

Volume(S) =

∫ b

a

Area(St) dt .

Before discussing the proof of this result, we shall indicate how Cavalieri’s Principle follows
from it.

COROLLARY. (Cavalieri’s Principle) Let a < b be real numbers, let A and B be bounded
measurable subsets of R

3 which lie between the parallel planes z = a and z = b, and suppose that
At and Bt are the (measurable) plane sections as in the statement of the theorem. If Area(At) =
Area(Bt) for all t ∈ [a, b], then Volume(A) = Volume(B).

Derivation of Cavalieri’s Principle. Two applications of the theorem yield the equations

Volume(A) =

∫ b

a

Area(At) dt , Volume(B) =

∫ b

a

Area(Bt) dt .
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We are given that Area(At) = Area(Bt) for all t ∈ [a, b], so it follows that the integrals on the right
hand sides of these equations are equal, and hence the left hand sides must also be equal. Since
the latter are the volumes of A and B, it follows that these volumes are equal.

Proof of the theorem. Our argument is based upon the material in Chapter 6 of Wheeden and
Zygmund. Let J = [c1, d1]× [c2, d2] be a solid rectangular region in R

2 such that if p = (p1, p2, p3)
is in S then pi ∈ [ci, di] for i = 1, 2. It follows that S is contained in the solid rectangular box
J∗ = J × [a, b] ⊂ R

3. Define the characteristic function χS of S on this rectangular box such
that χS(p) = 1 if p ∈ S and χS(p) = 0 if p 6∈ S. The measurability of S implies that S is a
measurable function on the rectangular box J ∗ (this function is not continuous if S is a nonempty
proper subset of J∗, but the function is sufficiently well behaved so that it can be integrated). Our
assumptions imply the hypotheses Theorem 6.1 (Fubini’s Theorem) on pages 77–78 of Wheeden
and Zygmund, and in fact we are assuming a strong form of the first conclusion in Fubini’s Theorem
(the first conclusion only states that “almost all” of the sets St are measurable — the term “almost
all” means there may be some exceptions that can be safely ignored). Therefore Fubini’s Theorem
implies that

∫ ∫ ∫

χS(x, y, t) dx dy dt =

∫ b

a

(
∫ ∫

J

χS(x, y, t) dx dy

)

dt .

Fundamental properties of integrals imply that the left hand side is the volume (or measure) of S,
and likewise for each choice of t the inner integral on the right hand side is equal to the area (or
measure) of St. If we substitute for the appropriate integrals using these equations, we obtain the
desired identity

Volume(S) =

∫ b

a

Area(St) dt .

FINAL REMARKS. Fubini’s Theorem is named after G. Fubini (1879–1943). Additional back-
ground on Cavalieri’s Principle can be found on pages 3–5 of history12.pdf and pages 156–159
(document pages 15–17) of the online reference cited there:

http://math.ucr.edu/∼res/math133/geometrynotes3c.pdf
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