12.B. The binomial series

The goal is to derive the Newton binomial series for the function $(1+x)^a$, which is valid for every nonzero real value of a and all x such that |x| < 1.

$$(1+x)^a = \sum_{k=0}^{\infty} {a \choose k} x^k$$
 where ${a \choose k} = \frac{a(a-1)\cdots(a-k+1)}{k!}$

Derivation. Denote the power series on the right hand side by $B_a(x)$. Then the ratio test for convergence of infinite series implies that $B_a(x)$ converges absolutely when |x| < 1 and diverges when |x| > 1. Exactly as in the case where a is a positive integer we have the identity

$$\begin{pmatrix} a \\ k \end{pmatrix} = \begin{pmatrix} a-1 \\ k \end{pmatrix} + \begin{pmatrix} a-1 \\ k-1 \end{pmatrix}$$

and this leads to the formula $B_a(x) = (1+x)B_{a-1}(x)$. Likewise, we have the identity

$$\begin{pmatrix} a \\ k \end{pmatrix} = \frac{a}{k} \cdot \begin{pmatrix} a-1 \\ k-1 \end{pmatrix} \quad \text{or equivalently} \quad k \cdot \begin{pmatrix} a \\ k \end{pmatrix} = a \cdot \begin{pmatrix} a-1 \\ k-1 \end{pmatrix}$$

which implies the differentiation formula $B'_a = aB_{a-1}$.

Now consider the function $Q(x) = (1+x)^{-a} B_a(x)$ and compute its derivative. By the standard differentiation rules and the preceding identities Q'(x) is equal to

$$(1+x)^{-a} \cdot aB_{a-1}(x) + (-a)(1+x)^{-a-1} \cdot B_a(x) =$$

$$(1+x)^{-a} \cdot aB_{a-1}(x) + (-a)(1+x)^{-a-1} \cdot (1+x)B_{a-1}(x)$$

and one can check directly that the right hand side equals zero. Therefore Q(x) is constant, and since Q(0) = 1 we see that $1 = (1+x)^{-a} B_a(x)$. If we multiply both sides of this equation by $(1+x)^a$, we obtain Newton's binomial formula.