
12.E. Derivation of the Binomial Series

This is fairly standard but is included for the benefit of anyone who has not seen it previously.
For an arbitrary real number a and a nonnegative integer r we write(

a

r

)
=

a(a− 1) · · · (a− r + 1)

r!

generalizing the familiar notation when n is a nonnegative integer. Note that this quantity is
eventually zero if a is a nonnegative integer and r is sufficieintly large, but otherwise it is not.
Furthermore, for all a and r we have the so-called “Pascal’s Triangle” Identity:(

a

r

)
=

(
a

r − 1

)
+

(
a− 1

r − 1

)
Verifying this is a straightforward algebraic exercise.

MAIN THEOREM. If |x| < 1 then we have

∞∑
k=0

(
a

k

)
xk = (1 + x)a .

Sketch of derivation. We shall leave many of the details for the reader to fill in as needed. We
must also assume that a is not a nonnegative integer; by the ordinary Binomial Theorem we know
what happens if the exponent is a nonnegative integer, and the following discsussion breaks down
because (1 + x)n is a finite sum if n is a nonnegative integer.

Let Pa(x) be the power series on the left hand side of the display. Then the theory of power
series in first year calculus yields the following information:

(i) This series converges absolutely if |x| < 1 and diverges if |x| > 1 by the ratio test.

(ii) Term by term differentiation yields the identity P ′a(x) = aPa−1(x) for all a and x such
that the series converges absolutely.

(iii) Standard manipulations for convergent power series and the generalized Pascal Triangle
Identity imply that Pa(x) = (1 + x)Pa−1(x).

If a is a nonzero integer, then we also know that

d

dx
(1 + x)a = a(1 + x)a−1

and for more general values of a we can establish this by the logarithmic differentiation rule

dy

dx
= y · d

dx
ln y

provided |x| < 1. Furthermore, one can check directly that the identity in the theorem is valid
when x = 0.

To verify that the identity is true in general consider the function

g(x) = (1 + x)−a · Pa(x) .
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Straigntforward application of the Leibniz rule for differentiating products implies that the deriva-
tive of this expression equals

(−a)(1 + x)−a−1Pa(x) + (1 + x)−a · (aPa−1(x))

and if we apply (iii) this expression becomes

(−a)(1 + x)−a−1Pa(x) + a(1 + x)−a−1 · Pa(x) = 0

so that g is a constant function. Since we have noted that g(0) = 1/1 = 1, it follows that g(x) = 1
for all x. Finally, if we multiply both sides of this equation by (1 +x)a then we obtain the equation
in the statement of the theorem.
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