
14. Calculus after Newton and Leibniz 
 

(Burton,  9.3, 10.2, 11.3) 
 

 

 
The calculus grew organically, sending forth branches 
while simultaneously putting down firm roots.  The roots 
were the subject of philosophical speculation that 
eventually led to new mathematics as well, but the 
branches were natural outgrowths of pure mathematics 
that appeared very early in the history of the subject. 
 

R. Cooke, The History of Mathematics, page 475 

 
We shall concentrate on points related to the material covered in first year calculus courses.  

Mathematics has continued to grow rapidly during the 300 + years following the invention of 
differential and integral calculus by Newton and Leibniz, but most of this history is well beyond 
the scope of the present course. 

 
The Bernoulli family 

 
Since several members of this family made important contributions to the mathematical and 
physical sciences beginning in the late 17th century and continuing throughout the 18th century, 
we shall insert a family tree which includes those family members whose mathematical 

achievements were highly notable; certain other descendants are also well – known, and one of 

them is the 1946 Nobel Prize winning German – Swiss novelist H. Hesse (1877 – 1962), who is 
known for books such as  Steppenwolf  and  Siddhartha.  
 

 
 

http://www-groups.dcs.st-and.ac.uk/~history/Diagrams/Bernoulli_family.gif 

 



The first Bernoulli brothers — James or Jacob or Jakob or Jacques (1655 – 1705) and John 

or Johann or Jean (1667 – 1748)  — made numerous important contributions to calculus and 
its applications soon after calculus was developed and became known to other scientists and 
mathematicians.   One small item worth noting is that the result known as  L’Hospital’s Rule 

was originally due to John Bernoulli but allegedly was sold to G. de L’Hospital (1661 – 1704) for 

an influential textbook the latter published in 1696.  The Bernoullis were particularly effective at 
applying the methods of differential and integral calculus to analyze new types of mathematical 
questions that had previously been out of reach.   These include the properties of special 
algebraic and nonalgebraic curves, infinite series, optimization problems, and the solution of 

separable differential equations that can be expressed in the form  y ʹʹʹʹ  =  P(x) Q(y)  for 

suitable functions  P(x)   and   Q(y).  Two specific examples of problems they promoted were 
the derivation of the equation for the catenary or “hanging chain curve” (given by the graph of  

f  (x)  =  a cosh bx  for suitable positive constants a and b) and the  brachistochrone problem , 
which asks for the curve of quickest descent connecting two given points in a vertical plane; it 
turns out that a portion of the cycloid curve is a solution to this question.  Here are some online 
references: 
 

http://mathworld.wolfram.com/Catenary.html 
 

https://en.wikipedia.org/wiki/Catenary 
 

http://mathworld.wolfram.com/BrachistochroneProblem.html 
 

Several members of the Bernoulli family made many further contributions to the study of 
differential equations and mathematical probability theory, and they also discovered several 
other extremely important applications of calculus and differential equations to physics.   The 
areas of physics they studied include optics, astronomy, fluid mechanics, wave motion, heat 
conduction and elasticity.    
 

Some of the mathematical disputes involving members of the family are mentioned on pages 

474 – 475 of Burton.  There was also a later dispute about work between John and Daniel 
about separate publications on hydrodynamics in 1738; subsequent analysis of historical 
records does not support the accusations raised by John Bernoulli in this case.  

 
Solid analytic geometry 

 
When plane analytic geometry was developed during the 17th century, several researchers 

including like Fermat, Schooten and P. de la Hire (1640 – 1718) were convinced that one could 

handle questions in  3 – dimensional geometry similarly by adding one more coordinate and 
making suitable adjustments to various formulas, but the details were not fully worked out until 

the 18th century.  Names associated with this work include J. Hermann (1678 – 1733), A. – C. 

Clairaut (1713 – 1765) and L. Euler.   
 

Coordinate geometry also allows one to study geometrical questions in dimensions greater than 

3; for example, to study 4 – dimensional geometry we view points as given by ordered 

quadruples of real numbers.  In the 18th century J. le Rond d’Alembert (1717 – 1783) suggested 
that time could be considered as a fourth dimension, and in the 19th century mathematicians 
began to study higher – dimensional geometry both for its own sake and for its physical 
applications (for example, there are numerous places in classical mechanics where it is useful 

to use a model corresponding to a space of 4 or even more dimensions).   There is a discussion 



of this topic at an advanced undergraduate level in Chapter 16 (pages 216 – 230) of the 

following book by a well – known author of books on science for a popular audience: 
 

I. N. Stewart.  Taming the infinite: The Story of Mathematics from Babylonian 
Numerals to Chaos Theory.  Quercus Publishing, London, 2008. 

  

 
Infinite series 

 
We note first that the standard infinite power series for functions are named after B. Taylor 

(1685 – 1731) and C. Maclaurin (1698 – 1746); the naming of the power series  
 

 
 

for Maclaurin is an accident of history; series of this type were recognized well before Maclaurin 
discussed them in one of his books, and he never claimed credit for discovering them.   
 

First year calculus books almost always mention that the infinite series  
 

 
 

converges, but often the value of the sum is not mentioned.  In fact, Euler proved the 
unexpected relationship 

 
 

using elaborate manipulations of infinite series.  This was just one in a sequence of increasingly 
bold and dramatic summation formulas that Euler derived.   
 

Such conclusions ultimately led Euler to carry out many speculative operations on infinite series 

that do not converge.  In particular, he suggested that  ½  is a reasonable value to take as the 
sum of the following divergent series: 
 

1   +   (– 1)   +   1   +   (– 1)   +   1   +   (– 1)   +   1   +   (– 1)   +   … 
 

This may seem absurd, but it turns out that one can find some good mathematical justifications 
for attaching this value to the divergent series.   Examples of this sort are somewhat artificial, 
but one can also construct important classes of physical problems involving infinite series with 
closely related convergence difficulties.  Predictably, one eventually encounters supposed 
formulas that lead to bizarre and sometimes contradictory answers.  One particularly striking 
example was Euler’s “conclusion” 
 

– 1   =   1   +   2   +   3   +   4   +   ... 
 

which is discussed on page 534 of Burton, and a similar “identity” is discussed in (14.A). 
 

However, in many cases it turns out that there are fairly large classes of infinite series which are 
divergent in the usual sense but can be viewed as “weakly convergent” in some precisely 
generalized sense.  One particularly important example is summability in the sense of E. Cesàro 

(1859 – 1906), and in fact Cesàro’s summation method yields Euler’s “reasonable value” of  ½  
for the sum displayed above.   Euler has been criticized for mindless formal manipulation in 
connection with his attempts to sum divergent series, and his view that every divergent series 
could be somehow evaluated was at best far too optimistic, but it is important to remember that 



he explicitly recognized the highly speculative nature of his thoughts on this issue, and one of  
his objectives was to see how far mathematicians could push the methods that proved to be so 
useful and reliable in other contexts (in other words, he was testing the robustness of the 

methods).  These issues are discussed further on pages 526 – 528 of the following article: 
 

V. S. Varadarajan.  Euler and his work on infinite series.  Bulletin of the 

American Mathematical Society (2) 44 (2007), 515 – 539. 

 
Euler’s contributions to mathematics 

 
Euler was the most prominent mathematician of the 18th century, and one of the most 
productive and influential mathematicians of all time; in particular, new publications of his 
continued to appear until 1831 (48 years after his death).  For many topics, his approaches are 

still the definitive treatments.  There is a discussion of Euler on pages 527 – 537 of Burton 
which mentions some aspects of his life and work; we shall include some additional information 
and comments.  
 

In addition to his introduction of  i  to denote the square root of  – 1  and his popularization of 

using  ππππ  to denote the ratio of the circumference of a circle to its diameter, Euler is also 
responsible for numerous other common notational conventions.  These include the familiar 

symbolism  f (x)  to denote the value of the function  f   for the variable  x, the modern notation 

for the trigonometric functions, the letter e for the base of the natural logarithms, and the large 

Greek letter  Σ   to denote “the summation of all terms with the specified form.”  The basic 

formula  

θθθθ⋅⋅⋅⋅++++θθθθ====
θθθθ sincos ie i  

 

is part of his definition of exponential and logarithmic functions for arbitrary complex numbers.  
We have already mentioned some of his contributions to number theory.   In his work on this 
subject, Euler was one of the first to employ methods from calculus, and as such his work 
anticipated the discovery of deep relations between calculus and number theory beginning in 
the 19th century (see supplement (14.E) for more on this topic; the proof of Fermat’s Last 
Theorem relies strongly on such relationships).  Euler also did extensive and extremely 
substantial work on developing and applying the methods of calculus to physical problems and 
to discrete mathematics (in particular, graph theory), but these contributions are beyond the 
scope of this course.  The so – called Euler Formula for polyhedra (which was also known to 
Descartes) has already been mentioned in http://math.ucr.edu/~res/math153/history03d.pdf.  
 

Page 529 of Burton retells a frequently repeated story about a supposed encounter between 
Euler (who held strong and fairly traditional religious beliefs) and the prominent French 

encyclopedist D. Diderot (1713 – 1784), who was harshly critical of religious orthodoxy.  Burton 
gives the standard reference for the story, asserting it “has circulated for so many years that 
historians tend to give it some credence,” but he also cast doubts on the details of the story. 
There is an even more critical view of the story in a footnote on page 128 of Struik’s  Concise 
History of Mathematics: 
 

This is a good example of a bad historical anecdote, since the value of an anecdote 
about an historical person lies in its faculty to illustrate certain aspects of his character; 
this particular anecdote serves to obscure the character both of Diderot and of Euler.  
Diderot knew his mathematics and had written on involutes [a class of plane curves 
derived from other examples] and probability, and no reason exists to think that the 
thoughtful Euler would have behaved in the asinine way indicated. 



 

In connection with the Diderot – Euler anecdote, it is also worthwhile to note that Catherine the 

Great (1729 – 96, Empress of Russia 1762 – 96) continued to support Diderot financially 
following his return to France from St. Petersburg. 

 
Trigonometric series 

 
The idea that sounds are caused by vibrating objects or media dates back to the Pythagoreans, 
if not earlier, and Leonardo Da Vinci’s experiments around the year 1500 confirmed that sound 
is propagated by vibrating waves.  One of Galileo’s many experimental achievements was to 
demonstrate that the basic tone or pitch of a sound depended upon the fundamental frequency 
of a periodic vibration, and in the 18th century D. Bernoulli observed that the shading differences 
between two sounds with a given fundamental frequency correspond to different combinations 
of harmonic overtones; in other words, there is vibration at a basic frequency which is 
modified by smaller vibrations at some (integral) multiple of the basic frequency.   As noted in 
supplement (14.F), it follows that the waveform of a sound is given by a trigonometric series 

given by linear combinations of the functions  sin (2ππππ    nx////P)  and  cos (2ππππ    nx////P), where  n  is a 

nonnegative integer.   Several examples are also discussed in (14.F). 
 

The existence and usefulness of such trigonometric expansions require some understanding of 
the following question:    
 

If we are given a function  f (x)  which is periodic with some positive period  P  —  algebraically,  

f (x + P )  =  f (x)  for all values of  x  —  to what extent is it possible to express  f  as a series 
whose terms are  “pure vibrations”  which are either constant or given by one of the functions  
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sin    where  n  is some positive integer? 

 
This question is covered in some but not all introductory calculus textbooks or supplementary 
online material for such books.  The following is a typical example: 
 

http://www.stewartcalculus.com/data/CALCULUS%20Early%20Transcendentals/upfiles/FourierSeries5ET.pdf  
 

To simplify the discussion, we shall restrict attention to the case where the period is 2ππππ; the 
general case can be retrieved by a simple change of variables.   
 

If the function  f   is a finite sum of the types of functions described above, then some standard 
integral calculations, which appear in nearly every textbook covering real variables or boundary 
value problems in partial differential equations, show that the coefficients in the expansion 
 

 
 

are given as follows: 
 

     
 

Note that by periodicity we could equally well integrate between  0  and  2ππππ.  In his boldly 

original work on heat conduction (Théorie analytique de la chaleur), J. – B. J. Fourier (1768 – 



1830) raised the issue of expanding fairly arbitrary periodic functions using infinite  Fourier 
series  of the form 
 

 
 

where the coefficients  a n  and  b n  are defined by integral formulas as above.  One extremely 
provocative feature of his theory was to include the possibility of representing discontinuous 
functions by such series.  There is good physical motivation for this because the  square wave  
and  sawtooth wave  functions with graphs 
 

       
 

(Source: http://en.wikipedia.org/wiki/Square_wave)  
 

model important types of physical vibrations (for example, square wave vibrations arise when 
one turns up an amplifier so high that the tone gets seriously distorted, and the sawtooth wave 
arises in sound synthesis and the functioning of cathode ray tubes).  Immediate questions about 
the convergence of such series were soon justified as mathematicians discovered examples 
where these trigonometric series do not behave as nicely as the power series that had been 
used systematically and reliably for some time.  In fact, problems arise even in some cases 
where one starts with a continuous function.   However, it also became clear that these series 
had some theoretical and experimental legitimacy even for discontinuous examples like those 
described above, and one important problem in the 19th and early 20th centuries was to 
understand the convergence properties of such series in greater depth.   A detailed discussion 
of results on this question is beyond the scope of this course, but there is a summary (written at 
the beginning graduate level) in the online reference 
 

http://en.wikipedia.org/wiki/Convergence_of_Fourier_series 
 

and for our purposes the main point is that trigonometric series were an important reason for 
mathematicians to take a much closer look at the logical soundness of infinite series 
expressions.   
 

There is a more detailed account of Fourier’s life and work on pages 610 – 614 of Burton. 
 

Finally, here are some standard additional online references for Fourier series: 
 

http://en.wikipedia.org/wiki/Fourier_series 
 

http://mathworld.wolfram.com/FourierSeries.html 
 

http://www.physics.miami.edu/~nearing/mathmethods/fourier_series.pdf 
 

http://www.uwec.edu/walkerjs/media/fseries.pdf 
 

http://www.intmath.com/Fourier-series/Fourier-intro.php 
 

The following extraordinary and extremely accessible book on the subject is also very highly 
recommended: 
 

Transnational College of LEX.  Who Is Fourier?: A Mathematical 
Adventure.   Language Research Foundation,  Tokyo, Japan, 1995. 

 



The preceding discussions lead naturally to the final topic : 

 
The logical soundness of calculus 

 
Aside from the questions on infinite series that we have just raised, there are even more 
important issues regarding calculus that were problematic during the 17th and 18th century.  The 
most important of these was the use of infinitesimals.  As indicated in Unit 12, the idea is well 
illustrated in the method employed by Cavalieri to study the volume of a solid A that is contained 

between two parallel planes.   If we assume that the planes are defined by the equations  z  =  

0  and    z  =  1, then for each  t  between  0  and  1  there is the cross section A t formed by 

Intersecting A with the parallel plane defined by  z  =  t .  Cavalieri’s idea was to view A as 

composed of an infinite collection of cylindrical solids whose bases are the cross sections A t 
and whose heights are some very small, in fact  infinitesimally small ,  value that we shall call  

dt .   From this viewpoint, the total volume is obtained by adding the volumes of these 
infinitesimally short cylindrical solids; in modern terminology, one adds or integrates these 

infinitesimals by taking the definite integral of the area function with respect to  t  from  0  to  1.  
Of course, the point of this discussion is to suggest that the volume of A is given by the 

following standard integral formula in which  a( t )  denotes the area of the planar section  A t  :  
 

 
 

 
 

(Source:  http://demonstrations.wolfram.com/CavalierisPrinciple/HTMLImages/index.en/popup_3.jpg)  

 



Similar considerations apply to differentiation.  To approximate the slope of the tangent line to a 

curve  y  =  f (x), one looks at the slope of the secant line joining  (x, y)  to  (x + ∆∆∆∆    x, y + ∆∆∆∆    y), 

where ∆∆∆∆    y  =  f (x + ∆∆∆∆    x) –  f (x).  This slope is equal to the quotient  ∆∆∆∆    y /∆∆∆∆    x , and the idea is 

that the slope of the tangent line is the corresponding quotient when  ∆∆∆∆    x  is the infinitesimally 

small quantity  dx, in which case  ∆∆∆∆    y  becomes the associated infinitesimally small quantity dy .  
 
It was clear to 17th and 18th century scientists and philosophers that such infinitesimals were 
supposed to be smaller than any finite quantity but were still supposed to be positive.  Not 
surprisingly, there were many questions about the logical consistency of using objects that were 
smaller than any finite positive quantity but still positive.   If one is careless with such a notion it 
is easy to contradict the principle that between any two real numbers there is a rational number; 
a crucial question is whether it is ever possible to be careful enough to avoid these or other 
logical difficulties.   Some of these issues lead directly to the sorts of paradoxes that Zeno had 
formulated more than 2000 years earlier.  Although proponents of calculus made vigorous and 
repeated efforts to explain infinitesimals and the computational methods of Newton and Leibniz 
were yielding highly reliable answers, these explanations did not really clarify the situation to 
some mathematicians or others of that era.    
 

Probably the most famous critique of infinitesimals was  The Analyst , by (Irish – Anglican) 

Bishop G. Berkeley (BARK – lee, 1685 – 1753); mathematicians and others realized the 
validity of his logical objections (as usual, it is beyond the scope of this course to assess his 
philosophical conclusions).   Progress in mathematics continued at a rapid pace, but Berkeley’s 
criticisms reinforced earlier views of many that calculus needed a more secure logical 
foundation.  With the development of calculus, mathematics had moved into new territory, not 
just abstracting familiar ideas but also contributing new concepts of its own.  It was also rapidly 
accepting an ever expanding collection of ideas and methods that were increasingly removed 
from ordinary experience.   In order to handle such new concepts it is necessary to maintain 
very strict and abstract logical standards which compensate for the increased remoteness from 
sensory experience.   
  

Towards the end of the 18th century Lagrange expressed strong dissatisfaction with the logical 
justification for calculus, and he proposed that the subject be formulated using infinite series.  
However, this did not suffice, for as noted above there were also serious questions about the 
elaborate manipulations with infinite series that mathematicians had been performing.   The 
crucial step towards resolving these difficulties was the reformulation of calculus using the 
concept of limit  (a concept which had not appeared explicitly in the work of Newton or Leibniz).  
The potential usefulness of such a notion had already been tentatively anticipated by Wallis and 
Gregory; in fact, d’Alembert had already proposed a definition of limits, but the wording needed 
to be made more precise.  There are somewhat different versions of this concept for continuous 
functions and sequences, and of course infinite series can be discussed using the second 
version because the simplest way to define them it to take the limit of the finite partial sums.  

Clear and usable concepts of such limits were (independently) due to J. A. Da Cunha (1744 – 

1787), B. Bolzano (1781 – 1848), and A. – L. Cauchy (1789 – 1857).  The difference can be 
described as follows:  Instead of working with a single infinitesimally small quantity, one thinks 
instead of an extremely small variable quantity which is rapidly shrinking and is eventually less 
than any fixed finite quantity. 
 

Bolzano’s work is particularly noteworthy for anticipating many important features in the ultimate 
development of the foundations for calculus.  In particular, he understood the importance of the 
completeness property for the real number system (an infinite series of nonnegative terms has 



a finite sum if and only if there is a uniform upper bound for its partial sums), he recognized the 
need to prove the Intermediate Value Property for continuous functions and proved it within 
his framework, and he foresaw some basic results in set theory (for example, the set of real 
numbers has a larger “order of infinity” than the infinite set of all nonnegative integers).   For a 
variety of reasons, Cauchy’s work had the greatest impact. In particular, his textbook of 1821 
describes the concept of limit in a form very close to the one in use today, and his definition of 
derivative is precisely the one used today.  Cauchy also stressed that the definite integral 
should be defined as the limit certain algebraic sums and is independent of the definition of the 
derivative. It is from Cauchy’s view of the integral that broad modern generalizations of this 
concept have developed.   Cauchy’s work also contains many of the straightforward 
convergence tests for infinite series which have been in calculus textbooks ever since his time, 
but as noted below his results left some convergence questions unresolved, particularly when 
one also takes into account the work of Fourier.  Here are some of the main questions that still 
required answers: 
 

1. How does one formulate the intuitively clear ideas in, say, Cauchy’s formulations with 
more precise and quantitative language?   The first full paragraph on page 614 of 
Burton (beginning on line 8) contains some comments about this issue. 

 

2. What can be said about the convergence of trigonometric and other familiar series? 
 

3. In connection with both of the preceding questions, what is a suitably precise and 
useful way of defining the concept of a function of a real variable? 

 

4. In connection with the preceding question, what is a suitably precise and useful way of 
describing the real number system? 

 

Several mathematicians found answers to these questions during the 19th century.   In 

particular, the modern quantitative definition of limit in terms of two positive numbers  δδδδ  (delta) 

and  εεεε  (epsilon) is due to K. T. W. von Weierstrass (1815 – 1897), the modern definition of 
continuity combines this with Cauchy’s formulation, and the approach to defining integrals in 

most modern calculus textbooks is due to G. F. B. Riemann (1826 – 1866).   For a very wide 
range of present day mathematical purposes, the definitive formulation of integral is a 

modification of Riemann’s which is due to H. Lebesgue (pronounced le – BAYG, 1875 – 1941).  

There are more detailed discussions of both Weierstrass and Riemann on pages 614 – 619 and 

723 – 724 of Burton, and there is a more detailed treament of the Riemann integral on pages 

726 – 727 of History of Mathematics – An Introduction (2nd Edition), by Katz.  These 
improved formulations of limits and continuity also led to a logically rigorous proof of another key 
result about continuous functions; namely, if a continuous function is defined on a  closed  
interval, then it takes maximum and minimum values on that interval (the result clearly fails for 
intervals which do not contain both endpoints or are infinite in at least one direction).  The 

earliest published proof of this result was due to E. Heine (1821 – 1881; not to be confused with 

the well – known German language poet H. Heine, 1797 – 1856). 
 

The writings of N. H. Abel (1802 – 1831) played an important part in the critical analysis of 
convergence questions for infinite series, which had not received much attention (except for the 
geometric series) until early in the 19th century.  One of the first serious steps in this direction 
was a proof by Gauss that a specific new example (his hypergeometric function) converges; 
this function is defined in  http://planetmath.org/encyclopedia/HypergeometricFunction.html  with 
extensive further information at  http://mathworld.wolfram.com/HypergeometricFunction.html.  As 
noted on page 610 of Burton, Abel noted that a convergence assertion of Cauchy’s was false 
for some trigonometric series, and clearly this was tied to the more general convergence 
questions arising from Fourier’s work.   This increased attention to convergence caused many 



mathematicians including P. – S. de Laplace (1749 – 1827) to re – examine their use of infinite 
series and confirm that the formal manipulations in their papers were justified.  In 1829  P. G. 

Lejeune Dirichlet (1805 – 1859) made a very important advance, proving a fairly weak sufficient 
condition for the convergence of  Fourier series which applied to a fairly wide class of periodic 

functions including  ( i )  all functions which could be written as the difference of two 

monotonically nondecreasing functions over the periodic interval except at the interval’s 

endpoints,    ( i i )  all functions which have continuous derivatives.  This was reassuring, but in 

the course of studying this problem, mathematicians also discovered that both continuous and 
discontinuous functions could behave in bizarre manners that they had not previously imagined, 
and for several reasons it was absolutely necessary to take such examples into account.   Some 
particularly significant examples were due to Bolzano, Dirichlet and Weierstrass.   On the other 

hand, results of Cauchy, Weierstrass and S. Kovalevskaya (1850 – 1891) showed that, for the 
most part, the infinite series expansions for functions solving basic questions in physics did 
converge in a very good manner.  The previously cited Wikipedia link on the convergence of 

Fourier series contains additional information on the convergence or non – convergence of 
these series. 
 

One question arising immediately from Fourier’s work was to find a sufficiently broad, precise 
and usable definition for a function.   Several mathematicians formulated tentative definitions 
during the 18th century, but in some cases they were imprecise and in others their insistence on 
nice, explicit analytic formulas excluded fundamental examples like the absolute value function 

(as usual, | x |  equals  x  if  x  is nonnegative and  – x  if  x  is nonpositive).    
 

 
 
(Source:  http://upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/360px-Absolute_value.svg.png) 
 

The decisive step towards defining a mathematical function was due to Dirichlet, who defined a 
function as an arbitrary rule which assigns to each value of some independent variable an 
associated value of the dependent variable.  This definition is discussed and stated completely 

on pages 613 – 614 of Burton.  The modern mathematical definition of function in is basically 

just a direct translation of Dirichlet’s definition into set – theoretic language. 
 

This was not quite the end of the story; functions were defined in terms of variables, but it was 

also necessary to be more precise about exactly how these variables — real numbers —  could 
be described in a precise mathematical sense.   Ultimately mathematicians realized that a 
secure logical foundation for calculus required a logically rigorous description of the real number 
system and a firm understanding of the real numbers themselves; these in turn required a  
theory of infinite sets.   Both developments were completed during the second half of the 19th 
century.  In order to describe the breakthrough for describing real numbers, it is useful to go 
back to the Greek discovery that some numbers were irrational.  After reaching this conclusion, 
Greek mathematicians turned to geometry as a foundation for mathematics precisely because 
their understanding of irrational numbers was incomplete.  However, the work of Eudoxus of 



Cnidus (c. 408 – 355 B. C. E.) yielded one very important property of real numbers; namely, 
between any two real numbers there is a rational number.  By the end of the 16th century our 
usual understanding of real numbers in terms of infinite decimals was a well established 
principle in European mathematics, science and engineering.  While this was sufficient for all 
computational purposes, it did not shed much conceptual light on questions about continuity, the 
existence of limits, and the overall logical soundness of the concept of a real number.  The final 

insights in the process were mainly and independently due to R. Dedekind (1831 – 1916) and 

G. Cantor (1845 – 1918), and it was essentially a converse to the principle implicitly due to 
Eudoxus:  Specifically, the real numbers are in some sense the absolutely largest possible 
number system  in which everything can be approximated by rational numbers to any desired 
degree of accuracy.  Justifying this viewpoint in a logically rigorous manner requires the 
methods and results of set theory  in the form developed by Cantor and subsequent 
researchers.   
 

Additional information on the historical development of set theory is presented on pages 4 – 14 
of the following online reference: 
 

http://math.ucr.edu/~res/math144/setsnotes1.pdf 
 

Still more information (but at a more advanced level) appears in Sections  I I I. 4  and  V I I. 5  

of the following related references: 
 

http://math.ucr.edu/~res/math144/setsnotes3.pdf 
 

http://math.ucr.edu/~res/math144/setsnotes7.pdf 

 
A logically rigorous approach to infinitesimals.   Despite the doubtful logical status of 
infinitesimals and the development of a rigorous foundation for calculus built upon set theory 
and the concept of limit, many subsequent users of mathematics continued to work with 
infinitesimals, even well after mathematicians had discarded the latter (for foundational 
purposes) in the 19th century.   Probable motivations include their relative simplicity, the fact that 
they were giving reliable answers, and an expectation that mathematicians would ultimately find 
a logically rigorous justification for whatever was being attempted.   Similarly, even after the 
creation of a sound logical foundation for calculus the use of infinitesimals in calculus and other 
textbooks continued well into the 20th century for several reasons, including their continued and 
frequent use in science and engineering.   The following textbook, which was widely used and 
went through many editions over more than half a century, is a typical example:  

 

W. A. Granville, P. F. Smith and W. R. Longley, Elements of Differential and 
Integral Calculus  (Various editions from 1904 to 1962).  Wiley, New York, 1962.  

ISBN: 0–471–00206–2. 
 

Eventually mathematicians did succeed in giving a logically rigorous justification for the concept 

of infinitesimals; in particular, during the 1960s A. Robinson (1918 – 1974) used extensive 
machinery from abstract mathematical logic to show that one can in fact construct a number 
system with infinitesimals that satisfy the usual rules of arithmetic.   However, the crucial 

advantage of Robinson’s modern concept of infinitesimal — its logical soundness — is 
seriously offset by the fact that, unlike 17th century infinitesimals, it is neither simple nor 
intuitively easy to understand.  The associated theory of  Nonstandard Analysis  has been 
studied to a considerable extent mathematically, but it is not widely used in the traditional 
applications of the subject to the sciences and engineering, and within mathematics it has not 
replaced the framework for calculus which was developed during the 19th century; on the other 
hand, some recent work in mathematical economics has been formulated within the context of 



nonstandard analysis.  The following online references provide further information on this 
subject:  

   

http://members.tripod.com/PhilipApps/nonstandard.html 
 

http://www.haverford.edu/math/wdavidon/NonStd.html 
 

http://mathforum.org/dr.math/faq/analysis_hyperreals.html 
 

http://en.wikipedia.org/wiki/Nonstandard_analysis 
 

http://www.math.uiuc.edu/~henson/papers/basics.pdf 
 

http://en.wikipedia.org/wiki/Criticism_of_non-standard_analysis  

 
Here are a few textbook references for nonstandard analysis: 

 

J. M. Henle and E. M. Kleinberg, Infinitesimal Calculus.  Dover Publications, New 
York,  2003.   
 

J. L. Bell, A Primer of Infinitesimal Analysis.  Cambridge University Press, New 
York,  1998.   
 

A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis (Pure 
and Applied Mathematics, Vol. 118).  Academic Press, Orlando, FL,  1965.  

 

There is also a complete elementary calculus textbook online which uses the methods of 
nonstandard analysis:  http://www.math.wisc.edu/~keisler/calc.html  
 


