14.E. Calculus and problems in algebra

Ever since the time of the Greeks, if not earlier, mathematicians have realized that one branch
of the subject is often extremely helpful in studying another. This is particularly apparent in the
Greeks’ systematic use of geometry to deal with irrational numbers and to solve equations that
we now view as basically algebraic; for example, several books in Euclid’s Elements include
large amounts of material devoted to formulating algebra geometrically, and there are very
lengthy treatments of issues related to irrational numbers. Conversely, the algebraic formulation
of coordinate geometry in the 17" century showed that algebraic methods made many basic
geometrical concepts and problems much easier to handle. In the opposite direction, during the
18™ century several mathematicians began to notice ways in which the methods and results
from calculus yielded fresh approaches to questions in algebra, which in some cases included
strong new insights into basic questions in algebraic subjects like number theory and solutions
of polynomial equations. In particular, input from calculus is fundamental to the proofs of
Fermat’s Last Theorem which were obtained near the end of the 20™ century. We shall simply
discuss a few easily stated examples to illustrate the applications of calculus to questions which
can be stated in purely algebraic terms.

Bernoulli numbers

One of the most basic results on power series is that the infinite series for the exponential
function has the form
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so that the coefficients for the various powers of x are given by a number — theoretic function;
namely, the factorial expression n! = 1-...+ n. The methods and results of calculus
quickly led to the discovery of other important numerical sequences, and the Bernoulli
numbers were an early example. As noted in the document

http:/math.ucr.edu/~res/math153/bernoulli-numbers.pdf

this sequence first appeared in the early 17™ century, and many of its properties were studied
independently by James Bernoulli and Seki; in particular, James Bernoulli noticed the formula
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in which the (Bernoulli) numbers B, are defined using the following power series expansion:
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Here is a table of the first few Bernoulli numbers:
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(Source: hitp://www.makli.com/bernoulli-numbers-002031/)

Many properties of these numbers are described in the previously cited article, which is a

cleaned up version of http:/numbers.computation.free.fr/Constants/constants.html. For our
purposes the most important point is the connection between these numbers and problems

related to calculus.

Here is one easily described context in which Bernoulli numbers appear. We have already
mentioned Euler’s discovery that the sum of all terms 1/k2 equals n2/6; in fact, if we let
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Additional information about Bernoulli numbers is available from the following online references:

http://en.wikipedia.org/wiki/Bernoulli nhumber

http://mathworld.wolfram.com/BernoulliNumber.html

http://www.bernoulli.org/




Stirling’s Formula. A related example deals with the factorial function n!; as noted above,
the latter is the product of the first n positive integers (and by definition 0! = 1). Simple
computations show that this function grows very rapidly as n increases (for example, 10! is

greater than 3,000,000), and one natural question is to understand how the growth rate relates
to that of other functions. During the first half of the 18" century one such estimate was
obtained using ideas from calculus; this result is known as Stirling’s Formula:
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This formula was discovered by J. Stirling (1667 — 1754) and (except for the constant factor
involving the square root of 2x) independently by A. De Moivre (1692 — 1770); there is a

discussion of the interaction between Sterling and De Moivre on pages 477 — 478 of Burton.
Here are some references for further information:

http://en.wikipedia.org/wiki/Stirling%27s approximation

http://www.math.uconn.edu/~kconrad/blurbs/analysis/stirling.pdf

We have already noted that Euler played an important role in applying the methods of calculus
to number theory. In particular, he discovered the following attractive and fundamentally

important infinite product identity (with an assumption that s > 1):
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Before discussing one important application of formulas like this, we shall first discuss an
important application of methods from calculus to answer a basic question about finding roots of
polynomials:

The Fundamental Theorem of Algebra. This is yet another important algebraic application of
ideas from calculus which answers old questions about roots of polynomials; despite the result’s
name, all proofs of it use the continuity properties of the real numbers in some fashion
and thus are intrinsically non — algebraic. On the other hand, the statement of the result is
entirely algebraic:

EVERY nonconstant single — variable polynomial with complex coefficients
has at least one complex root. Equivalently, all non — constant polynomials
with complex coefficients are products of linear polynomials.

As noted in http://en.wikipedia.org/wiki/Fundamental theorem of algebra and page 548 of
Burton, such a result had been conjectured in the 17" century, and there were numerous
attempts to prove it during the 18" century, and the first indisputably complete proof was given
by J. R. Argand (1768 — 1822) in 1806.

Primes in an arithmetic progression. Perhaps the most unexpected applications of calculus
to algebraic involve the distribution of prime numbers. Euclid’s proof shows that there are
infinitely many odd primes, and clearly one can split the odd primes into two subsets depending
upon whether they leave a remainder of 1 or 3 when divided by 4. Some textbooks in
elementary number theory or abstract algebra contain an exercise asking for a proof that the
second of these classes is infinite, and it is natural to ask more generally about the number of




primes in an arbitrary arithmetic progression. The following result, which is based upon
methods from calculus and provides an optimally strong answer to the question, is due to J. P.
G. Lejeune Dirichlet (generally abbreviated to Dirichlet, 1805 —1859; the pronunciation is either
deer— i — clay or deer— i— shlay):

Given two positive relatively prime integers a andd, the arithmetic progression
a + nd, wheren = 0, contains infinitely many primes.

This and many other key connections between number theory and calculus can be traced back
to Euler’s infinite product identity which was described above. Further information on Dirichlet’s
result and related matters can be found on pages 559 — 560 of Burton and the online article
http://en.wikipedia.org/wiki/Dirichlet%27s theorem on arithmetic progressions. As noted there,
an “elementary” proof not using input from calculus was given much later by A. Selberg (1917
—2007). In arelated direction, during the first decade of the 21 century B. Green and T. Tao
proved that the sequence of primes contains arbitrarily long arithmetic progressions (see
http://en.wikipedia.org/wiki/Green%E2%80%93Tao theorem). Many other questions involving the
distribution of primes have been studied using methods from calculus, and the study of such
problems has played an important role in mathematics during the past two centuries. Here are
some references:

http://en.wikipedia.org/wiki/Prime number theorem

http://mathworld.wolfram.com/PrimeNumberTheorem.html

http://en.wikipedia.org/wiki/Riemann hypothesis

Degrees of separation and unification in mathematics

In modern mathematics there are many contexts in which ideas from one branch of the subject
often turn out to have important and far — reaching consequences for apparently unrelated
problems. One can speculate whether or not this reflects the “six degrees of separation”
theories which have been studied and written about in popular culture over the past few
decades, but in any case they suggest a fundamental unity in mathematics which underlies the
increasing number of different branches of the subject.

Here are some references which discuss evidence for and against the notion of “six degrees of
separation.” While it can be interesting or useful to speculate on this theory in particular
examples, in each specific case it is also important to make sure that the supposed relations
between two connected objects are actually significant.

http://whatis.techtarget.com/definition/0,,sid9 gci932596,00.html
http://message.snopes.com/showthread.php?t=24972

http://en.wikipedia.org/wiki/Six degrees of separation
http://en.wikipedia.org/wiki/Erd%C5%91s number
http://www.oakland.edu/enp/




