
The maximality property of the real number system

The purpose of this document is to explain how one can establish the folowing characterization
of real numbers. We shall follow the notation and definitions in set-theory-notes.pdf, with
particular attention to Sections V.5 and VIII.3.

THEOREM. Let F be an ordered field satisfying the following conditions;

(i) If a < b in F , then there is some rational number q such that a < q < b.

(ii) F is maximal in the sense that if E is an ordered field satisfying (i) and F is order-

preservingly isomorphic to a subfield F0 of E, then E = F0.

Then F is order-preservingly isomorphic to R.

Sketch of proof. We shall use the Dedekind cut construction of the real numbers R from the
rational numbers Q. A Dedekind cut in Q is a pair of nonempty disjoint subsets {A,B} such that

A ∩ B = ∅ and A ∪ B = Q,

if a0 ∈ A and a < a0 then a ∈ A, and if b0 ∈ A and b > b0 then b ∈ B,

A has no largest element.

If q ∈ Q then q determines a Dedekind cut, with A equal to all rational numbers stricly less than
q and B equal to all rational numbers greater than or equal to q. Irrational numbers like

√
2

determine Dedekind cuts similarly, but for an irrational number the set B does not have a least
element.

This definition extends naturally to an arbitrary ordered field F satisfying (i) if we take A and
B to be subsets of F which satisfy the properties listed above; let D(F ) denote the set of Dedekind
cuts in F .

The crucial observation is that one can imitate the construction of R from Q if the latter
is replaced by an arbitrary ordered field; in particular, we can make D(F ) into an ordered field
containing F . This is a straightforward extension of the argument employed to construct R = D(Q).
Here is an online reference for that construction:

http://www.uwec.edu/andersm/SETSVIII.pdf

Furthermore, if F is an ordered field satisfying (i) and E is another ordered field with this property
such that F ⊂ E, then the construction yields an order-preserving homomorphism of ordered fields
from D(F ) to D(E). The existence of the mapping requires some proof: Given a Dedekind cut
{A,B} in F , define A∗ to be the set of all x ∈ E such that x ≤ a for some a ∈ F , and define B∗

to be the complement of A∗ in B∗. All of the properties for Dedekind cuts except the second ones
follow immediately, and the first part of the second property also follows immediately. To prove
the second half of the second property, suppose that y ∈ B∗ and y < x, and assume that we do
not have x ∈ B∗. Then we have x ∈ A∗, and therefore by the first half of the first property we
also have y ∈ A∗, which is a contradiction. Therefore {A∗, B∗} is a Dedekind cut in E. — The
homomorphism and order preservation properties of the map D(F ) → D(E) then follow from the
construction. Since every homomorphism of fields is 1–1, it follows that all the field homomorphisms
in this paragraph are 1–1.

The results of Section VIII.3 in set-theory-notes.pdf imply that every complete ordered
field is uniquely isomorphic to R, and hence if F ⊂ E as in the preceding paragraph and we take
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the natural inclusion of Q in F , then the methods of the previously cited section show that we have
isomorphisms of complete ordered fields R = D(Q) → D(F ) and D(F ) → D(E).

Suppose now that F satisfies (i) and the maximality condition in the theorem. Since F is an
ordered subfield of D(F ) it follows that F = D(F ). If we combine this with the previously described
isomorphism R → D(F ), we obtain an order-preserving isomorphism between R and F .
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