
Summing divergent series

In Unit 14 of the course notes we noted that certain manipulations appear to yield the value
−1 for the infinite series

1 + 2 + 3 + 4 + · · · .

On the other hand, the very interesting YouTube video

https://m.youtube.com/watch?feature=youtu&be&v=w-I6XTVZXww

uses similar manipulations to obtain the apparent conclusion that this sum should be − 1

12
. The

purpose of this note is to describe the reasons for this apparent contradiction: If one applies valid
rules for summing convergent series to divergent series, it is often possible to get many different
candidates for the “sum” of a divergent series.

More formally, the underlying question here is to determine if there is a reasonable value for
the sum of an infinite series

∑
n

an if the latter does not converge in the standard sense; namely, the
sequence of partial sums sn =

∑n

k=1
ak has a (unique) limiting value. Questions of this sort arose

in Euler’s writings, and they turn out to play a significant role in understanding the convergence
properties of trigonometric series having the form

∑

k

Ck sin(2πkx + δk) .

One of Euler’s heuristic conclusions (i.e., not rigorously justified) was the formula

1

2
= 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + · · · .

There are several heuristic ways of reaching this conclusion, and in fact there is a logically rigorous
theory of Cesàro summability which also yields this value for the given divergent series. In some
sense this method justifies the intuitive notion that, since the partial sums oscillate between 1 and
0, the sum of the series should be halfway inbetween. Details on the summability theory and its
applications can be found in Rudin, Principles of Mathematical Analysis or Widder, Advanced

Calculus (Second Edition).

However, one must be careful about not assuming that manipulations which are valid for
convergent series are equally valid for divergent series; in fact, even if a series is convergent, there are
valid manipulations with finite sums that are not valid and can yield answers which are apparently
contradictory. For example, the YouTube video and the directory files for Unit 14 apply the identity

∑

k

ak +
∑

k

bk =
∑

k

ak + bk

which is valid if the first two series converge but need not be valid otherwise.

We should now give examples to show that rigorously justifiable manipulations with convergent
series can yield absurd conclusions when applied to divergent series like the ones described above.
The first step is the following result on convergent series, which will be proved at the end of this
document.

PROPOSITION 1. Suppose that
∑

k≥1
ak = s is a convergent series, and suppose that

the sequence {bk} is obtained from {ak} by interchanging adjacent terms, with b2k = a2k−1 and
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b2k−1 = a2k for all k ≥ 1. Then
∑

k≥1
bk = s ; i.e., the series converges and its sum is also equal

to s.

We shall now present a sequence of assertions which are very similar to those in the YouTube video
but lead to a patently false conclusion. Assume that we have a unique value for the sum of the
series

1 + 2 + 3 + 4 + · · ·

and denote this value by S. Then we have

S + 1

2
= (1 + 2 + 3 + 4 + · · · ) + (1 − 1 + 1 − 1 + · · · )

and by the same reasoning employed in the YouTube video we may rewrite this as

(1 + 1) + (2 − 1) + (3 + 1) + (4 − 1) · · · = 2 + 1 + 4 + 3 + · · · .

Proposition 1 suggests that the right hand sum should be equal to S (this would be the case if the
series converged), and therefore we would have S + 1

2
= S, which is a contradiction. — The source

of the contradiciton is our use of manipulations which are valid for convergent series but cannot be
extended to valid operations on divergent series.

Inserting zeros

Even within the restricted realm of Cesàro summable series, many reasonable properties of
convergent series fail to generalize. We shall start with the following simple observation:

PROPOSITION 2. Suppose that
∑

k≥1
ak = s is a convergent series, and suppose that

the sequence {bk} is given by adding adjacent terms, with bk = a2k−1 + a2k for all k ≥ 1. Then∑
k≥1

bk = s ; i.e., the series converges and its sum is also equal to s.

With the preceding discussion at our disposal, it is easy to show that Proposition 2 fails for series
which are Cesàro summable but not convergent. It suffices to consider the standard example with
ak = (−1)k+1, for which the Cesàro sum is 1

2
. If we form the associated series bk, then bk = 0 for

all k, so the series is convergent with sum zero; since a convergent series is Cesàro summable and
the its Cesàro sum equals the uswual sum, we see that the Cesàro sum values for

∑
k≥1

ak and∑
k≥1

bk are unequal.

Here is another example to show that valid rules for convergent series break down if one assumes
they also work for Cesàro sums. As before, we begin with a result which is true for convergent
series. If we are such a series

∑
n

an and we form a new sequence of values bn by interpolating some
number of zeros between consecutive terms (possibly none in some cases), then we expect that the
new series

∑
n

bn also converges and the sums of the two series are the same. The following result
gives a rigorous proof of that expectation.

PROPOSITION 3. Suppose that
∑

k≥1
ak = s is a convergent series, let {nk} be a strictly

increasing subsequence of {1, 2, · · · }, and suppose that the sequence {bk} is obtained from {ak}
by setting bnk

= ak for all k ≥ 1 and bk = 0 otherwise. Then
∑

k≥1
bk = s ; i.e., the series

converges and its sum is also equal to s.

However, Proposition 3 does not extend to Cesàro summable series. For example, suppose we
consider the infinite series

1 − 1 + 0 + 1 − 1 + 0 + 1 − 1 + 0 + 1 − 1 + 0 + · · · .
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All we have done is insert zeros between the terms in the 2k and 2k + 1 position, but now the
averages of the partial sums converge to 1

3
. Clearly we could get many other values as well by

inserting suitable patterns of zeros.

Moral of the preceding discussions

The manipulations in Unit 14 and the YouTube video both yield bizarre values and conclusions
for the putative sum 1+2+3+ · · · ; furthermore, there are other sorts of manipulations which will
yield still other bizarre values and conclusions. Therefore it is necessary to be extremely cautious
when trying to assign a value to a divergent series and realize that familiar sorts of manipulations
with convergent series are not necessarily valid.

Proofs of Propositions 1 – 3

We shall now prove the assertions about convergent infinite series that appeared in the discus-
sion.

Proof of Proposition 2. If sn is the nth partial sum for
∑

k≥1
ak and tn is the nth partial

sum for
∑

k≥1
bk, then {tn} is the subsequence {s2n}. Since {sn} converges to s by assumption,

it follows that s is the limit of every subsequence obtained from {sn}. In particular, this applies to
{tn}, and therefore {tn} also converges to s.

Proof of Proposition 1. Let sn be the nth partial sum for
∑

k≥1
ak, and let tn is the nth

partial sum for
∑

k≥1
bk. These two sequences are related by the following identities:

t2n = s2n , t2n+1 = s2n+1 + a2n+2 − a2n+2

Since the terms of a convergent series go to 0 as n → ∞, it follows that t2n → s and t2n+1 → s

as n → ∞. From this we can show that tn → s as n → ∞ by the following argument: If ε > 0
then there are positive integers N0 and N1 such that |t2n − s| < ε if n ≥ N0 and |t2n+1 − s| < ε if
n ≥ N1. Let N be the larger of 2N0 and 2N1, and suppose that m ≥ N . If we write m = 2n + r

where r = 0 or 1, then n ≥ N0 and n ≥ N1, and therefore we have |tm − s| < ε. By the definition
of a sum for a convergent infinite series, this yields the desired identity

∑
k≥1

bk = s.

Proof of Proposition 3. As before, the first step is to analyze the partial sums tn for
∑

k≥1
bk

in terms of the partial sums sn for
∑

k≥1
ak and the sequence {nk}. By construction we have

tn = snk
if nk ≤ n < nk+1; this is well defined because limk→∞ nk = ∞ (in fact, nk ≥ k for all k)

and {nk} is strictly increasing. Given ε > 0 there is some M such that m ≥ M implies |sm−s| < ε.
Therefore if n ≥ nM we have tn = sm for some m ≥ M , which means that |tn − s| = |sm − s| < ε

and hence
∑

k≥1
bk = s.
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