MORE EXERCISES RELATED TO history06X.pdf

Additional exercises

21. For each of the following numbers n, find a one or two two digit integer c such that $101c \equiv 1 \mod n$. You may use the Euclidean Algorithm or a calculator to solve this problem.

 $\begin{array}{ll} (a) & n = 97 \\ (b) & n = 99 \\ (c) & n = 103 \\ (d) & n = 105 \end{array}$

22. (a) Use the methods of history06b.pdf to show that if p is a prime and $x = a + b\sqrt{p}$ is a number such that a and b are rational numbers with $b \neq 0$, then $x \neq 0$ and

$$\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{N(a+b\sqrt{p})} .$$

(b) Suppose that integers u and v satisfy the equation $u^2 = v^2 p - 1$, where once again p is a prime. Construct a solution to the Pell's equation $a^2 = b^2 p + 1$.