MORE EXERCISES RELATED TO history07.pdf

Additional exercises

21. (a) It is well known that one can construct Pythagorean quadruples of positive integers by combining two Pythagorean triples. For example, one can use $3^2 + 4^2 = 5^2$ and $5^2 + 12^2 = 13^2$ to find $3^2 + 4^2 + 12^2 = 13^2$. Prove that for each $n \ge 3$ there is a Pythagorean (n+1)-tuple $a_1^2 + \ldots + a_n^2 = c^2$ where a_k is an integer for all k, we have $a_1 < \ldots < a_n$, and c is also a positive integer. [*Hint:* Use the fact that if d is an odd number then we have a Pythagorean triple $p^2 + d^2 = q^2$.]

(b) For each n can one find infinitely many such (n + 1)-tuples? Either prove this or find a counterexample.

22. Let F_n denote the n^{th} Fibonacci number. Show that

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n}$$

is finite and determine its value.

23. (a) Suppose that the positive integer a > 1 is abundant, and let $m \ge 2$ be an arbitrary positive integer. Prove that ma is also abundant.

(b) Suppose that the positive integer a > 1 is perfect, and let $m \ge 2$ be an arbitrary positive integer. Prove that ma is abundant.

(c) Suppose that the positive integer a > 1 is perfect, and let d < a be an integer which divides a. Prove that d is deficient.

Fibonacci number identities

Since there is some ambiguity in notation, we shall adopt the alternative $F_1 = F_2 = 1$ in the problems below.

- **24.** Prove that the Fibonacci numbers F_m satisfy the identity $F_n^2 F_{n-2}^2 = F_{2n-2}$.
- **25.** Verify the identity $F_n^2 + F_{n+1}^2 = F_{2n+1}$.
- **26.** Verify the identity $F_{n+1}^2 F_n^2 = F_{n-1}F_{n+2}$.
- **27.** Verify the identity $F_{n-1}F_{n+1} = F_n^2 + (-1)^n$.