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Additional exercises

21. (a) It is well known that one can construct Pythagorean quadruples of positive integers by
combining two Pythagorean triples. For example, one can use 32+42 = 52 and 52+122 = 132 to find
32+42+122 = 132. Prove that for each n ≥ 3 there is a Pythagorean (n+1)-tuple a21+ ...+a2

n
= c2

where ak is an integer for all k, we have a1 < ... < an, and c is also a positive integer. [Hint: Use
the fact that if d is an odd number then we have a Pythagorean triple p2 + d2 = q2.]

(b) For each n can one find infinitely many such (n + 1)-tuples? Either prove this or find a
counterexample.

22. Let Fn denote the nth Fibonacci number. Show that

lim
n→∞

Fn+1

Fn

is finite and determine its value.

23. (a) Suppose that the positive integer a > 1 is abundant, and let m ≥ 2 be an arbitrary
positive integer. Prove that ma is also abundant.

(b) Suppose that the positive integer a > 1 is perfect, and let m ≥ 2 be an arbitrary positive
integer. Prove that ma is abundant.

(c) Suppose that the positive integer a > 1 is perfect, and let d < a be an integer which divides
a. Prove that d is deficient.

Fibonacci number identities

Since there is some ambiguity in notation, we shall adopt the alternative F1 = F2 = 1 in the
problems below.

24. Prove that the Fibonacci numbers Fm satisfy the identity F 2
n
− F 2

n−2 = F2n−2.

25. Verify the identity F 2
n + F 2

n+1 = F2n+1.

26. Verify the identity F 2
n+1 − F 2

n = Fn−1Fn+2.

27. Verify the identity Fn−1Fn+1 = F 2
n
+ (−1)n.


