# MORE EXERCISES RELATED TO history07.pdf 

## Additional exercises

21. (a) It is well known that one can construct Pythagorean quadruples of positive integers by combining two Pythagorean triples. For example, one can use $3^{2}+4^{2}=5^{2}$ and $5^{2}+12^{2}=13^{2}$ to find $3^{2}+4^{2}+12^{2}=13^{2}$. Prove that for each $n \geq 3$ there is a Pythagorean $(n+1)$-tuple $a_{1}^{2}+\ldots+a_{n}^{2}=c^{2}$ where $a_{k}$ is an integer for all $k$, we have $a_{1}<\ldots<a_{n}$, and $c$ is also a positive integer. [Hint: Use the fact that if $d$ is an odd number then we have a Pythagorean triple $p^{2}+d^{2}=q^{2}$.]
(b) For each $n$ can one find infinitely many such $(n+1)$-tuples? Either prove this or find a counterexample.
22. Let $F_{n}$ denote the $n^{\text {th }}$ Fibonacci number. Show that

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}
$$

is finite and determine its value.
23. (a) Suppose that the positive integer $a>1$ is abundant, and let $m \geq 2$ be an arbitrary positive integer. Prove that $m a$ is also abundant.
(b) Suppose that the positive integer $a>1$ is perfect, and let $m \geq 2$ be an arbitrary positive integer. Prove that $m a$ is abundant.
(c) Suppose that the positive integer $a>1$ is perfect, and let $d<a$ be an integer which divides $a$. Prove that $d$ is deficient.

Fibonacci number identities

Since there is some ambiguity in notation, we shall adopt the alternative $F_{1}=F_{2}=1$ in the problems below.
24. Prove that the Fibonacci numbers $F_{m}$ satisfy the identity $F_{n}^{2}-F_{n-2}^{2}=F_{2 n-2}$.
25. Verify the identity $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$.
26. Verify the identity $F_{n+1}^{2}-F_{n}^{2}=F_{n-1} F_{n+2}$.
27. Verify the identity $F_{n-1} F_{n+1}=F_{n}^{2}+(-1)^{n}$.

