SOLUTIONS TO EXERCISES FROM math153exercises03a.pdf

6. Here are tables which display the steps in applying the Euclidean Algorithm. The greatest common divisors are highlighted in

green.

а	b	q	r	а	b	q
662	414	1	248	9998	6060	1
414	248	1	166	6060	3938	1
248	166	1	82	3938	2122	1
166	82	2	2	2122	1816	1
82	2	41	0	1816	306	5
а	b	q	r	306	286	1
277	123	2	31	286	20	14
123	31	3	30	20	6	3
31	30	1	1	6	2	3
30	1	30	0	a	b	q
а	b	q	r	14039	1529	9
201	111	1	90	1529	278	5
111	90	1	21	278	139	2
90	21	4	6	a	b	q
21	6	3	3	54321	12345	4
6	3	2	0	12345	4941	2
а	b	q	r	4941	2463	2
5040	1001	5	35	2463	15	164
1001	35	28	21	15	3	5
35	21	1	14	а	b	q
21	14	1	7	111111	11111	10
14	7	2	0	11111	1	11111

- 7. (a) We have (2k+3) (2k+1) = 2 and (2k+1) 2*k = 1, which yield the identity 1 = (k+1)*(2k+1) k*(2k+3). Since the greatest common divisor d of m and n also divides every integral linear combination x*m + y*n, it follows that d divides 1 and hence d must be 1.
- (b) In this case we have (2k+5) (2k+1) = 4, but now we must consider the cases where k is even or k is odd separately. Suppose first that k is even and write k = 2r. Then we have 1 = (2k+1) 4*r = (r+1)*(2k+1) r*(2k+5). The same reasoning as in part (a) now implies that the greatest common divisor must be 1.

Next suppose that k is odd and write k = 2r+1 so that 2k+1 = 4r+3. In this case we have 3 = (2k+1) - 4*r and 4 - 1*3 = 1, which imply that 1 = (r+1)*(2k+5) - (r+2)*(2k+1). The same considerations as before now show that the greatest common divisor must be 1.

8. The simplest example occurs when k = 1, in which case 2k+1 = 3 and 2k+7 = 9. In fact, the two numbers are not relatively prime if and only if k = 3r + 1 for some nonnegative integer r. (See if you can prove this!)