SOLUTIONS TO EXERCISES FROM mathl153exercises03a.pdf

6. Here are tables which display the steps in applying the Euclidean Algorithm. The greatest
common divisors are highlighted in

green.

a ‘ b ‘ q ‘ r ‘ a b q r
662 414 1 248 9998 6060 1 3938
414 248 1 166 6060 3938 1 2122
248 166 1 82 3938 2122 1 1816
166 82 2 2 2122 1816 1 306

82 2 41 0 1816 306 5 286

a b q r 306 286 1 20
277 123 2 31 286 20 14 6
123 31 3 30 20 6 3 2

31 30 1 1 6 2 3 0
30 1 30 0 a b q r

a b q r 14039 1529 9 278
201 111 1 90 1529 278 5 139
111 90 1 21 278 139 2 0

90 21 4 6 a b q r
21 6 3 3 54321 12345 4 4941
6 3 2 0 12345 4941 2 2463

a b q r 4941 2463 2 15

5040 1001 5 35 2463 15 164 3

1001 35 28 21 15 3 5 0

35 21 1 14 a b q r
21 14 1 7 111111 11111 10 1
14 7 2 0 11111 1 11111 0

7. (@) We have (2k+3) — (2k+1) = 2 and (2k+1) —2+k = 1, which yield the identity 1 =
(k+1)*(2k+1) — k*(2k+3). Since the greatest common divisor d of m and n also divides every
integral linear combination x*m + yx*n, it follows that d divides 1 and hence d must be 1.

(b) In this case we have (2k+5) — (2k+1) = 4, but now we must consider the cases where K is

even or K is odd separately. Suppose first that K is even and write K=2r. Then we have 1 =
(2k+1) — 4*r = (r+1)*(2k+1) — r#(2k+5). The same reasoning as in part (a) now implies that

the greatest common divisor must be 1.



Next suppose that k is odd and write K = 2r+1 so that 2k+1 = 4r+3. In this case we have 3 =
(2k+1) —4*r and 4 —1%3 = 1, which imply that 1 = (r+1)*2k+5) — (r+2)*(2k+1). The
same considerations as before now show that the greatest common divisor must be 1.

8. The simplest example occurs when K = 1, in which case 2k+1 = 3 and 2k+7 = 9. In

fact, the two numbers are not relatively prime if and only if kK = 3r +1 for some nonnegative
integer r. (See if you can prove this!)



