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21. (a)We shall use the identity

d2 +

(
d2 − 1

2

)2

=

(
d2 + 1

2

)2

.

If d is odd, then the second quantity in the expression is even (note that d2 − 1 is divisible by 4)
and the second quantity is odd (in this case d2 + 1 ≡ 2 mod 4). Define a sequences of numbers dk
as follows, starting with d1 = 3, c2 = 4, and

dk+1 =
d2k + 1

2
, ck+1 =

d2k+1 − 1

2
= dk+1 − 1

for k ≥ 2. Then by induction and the previous identity we have

d2k + c2k+1 = d2k+1

so that by induction we also have

d21 +

k∑
n=1

c2n+1 = d2k+1

showing that the sequence {d1, c2, · · · , ck+1} is a Pythagorean (k + 1)-tuple for each k.

(b) Probably the easiest way to construct an infinite family of examples is to take each sequence
{dk} and multiply everything by a fixed integer m ≥ 2. However, there are also methods for
constructing many other families of examples. In particular, if we start with 12 + 22 + 22 = 32

we can start with that sequence and use 32 + 44 = 52 to obtain 12 + 22 + 22 + 44 = 52, then use
52 + 122 = 132 to obtain 12 + 22 + 22 + 122 = 132, and so on. Also, in another direction we can
start with d1 ≥ 7 as an arbitrary odd integer and proceed as in (a).

22. By the main result in history07a.pdf we know that

Fn =
φn − ψn

√
5

where φ = 1
2 (
√

5 + 1) and ψ = 1
2 (
√

5 − 1). It follows that φ > 1 > ψ > 0. We shall prove the
following more general result:

FORMULA. If α > 1 > β > 0, then

lim
n→∞

αn+1 − βn+1

αn − βn
= α .



Derivation. Rewrite the quotient on the left hand side as

αn+1(1− βn+1α−n−1)

αn(1− βnα−n)
= α · 1− βn+1α−n−1

1− βnα−n
.

Our assumptions imply that 1 > βα−1 > 0 and therefore both 1−βnα−n and 1−βn+1α−n−1 go to
1 as n→∞. Therefore the limit of the original fraction is α. If we specialize to the ratio Fn+1/Fn,
this formula shows that the limit of the latter equals φ.

23. (a) If a > 1 is abundant, then a <
∑

d<a,d|a d, so that

ma < m ·
∑

d<a,d|a

d =
∑

d<a,d|a

md ≤
∑

c|c<ma,c|ma

c

where the final inequality holds because the numbers md are some of the proper divisors of ma. In
fact there is always at least one more given by c = 1. These inequalities show that ma is abundant.

(b) If a > 1 is perfect, then a <
∑

d<a,d|a = d, so that

ma = m ·
∑

d<a,d|a

d =
∑

d<a,d|a

md

and as in the first part, we know that 1 is yet another proper divisor of md. Therefore the right
hand side is strictly less than

1 +
∑

d<a,d|a

md ≤
∑

c|c<ma,c|ma

c

and thus we once again conclude that ma is abundant.

(b) Suppose that a > 1 is perfect and d 6= 1 properly divides a, so that a = md for some m > 1.
By definition we know that d is perfect, abundant or deficient. If either of the first two possibilities
holds then by the first two parts of the exercise we know that a = md is abundant. Since this is
not the case it follows that d must be deficient.
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26.

27.
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