Sexagesimal expansions of numbers between 0 and 1

It might be helpful to recall a basic rule for determining a (base 10) decimal expansion of a real number.

Formula. Suppose that x is a real number strictly between 0 and 1 whose decimal expansion has the form $0 . a_{1} a_{2} a_{3} a_{4} \cdots$ where the a_{j} are integers in the set $\{0,1,2,3,4,5,6,7,8,9\}$; in the ambiguous case where x is a finite decimal fraction, take the expansion which has infinitely many zeros. Then a_{1} is the greatest integer $\leq 10 x$.
NOTATION. We shall lett $[y]$ be the greatest integer $\leq y$.
We can use this to find each a_{j} recursively as follows: Let $r_{0}=x$, so that $10 x=10 r_{0}=$ $\left[10 r_{0}\right]+r_{1}$, where $0 \leq r_{1}<1$. Since our original decimal expansion was uniquely chosen and does not end with an infinite sequence of 9 's, it follows that $\left[10 r_{0}\right]=a_{1}$ and r_{1} has decimal expansion 0. $a_{2} a_{3} a_{4} \cdots$. We may continue in this fashion, defining $r_{j} \in[0,1)$ recursively by

$$
r_{j}=10 r_{j-1}-\left[10 r_{j-1}\right]
$$

and at each step we have $a_{j-1}=\left[10 r_{j-1}\right]$.
The same procedure works if we want expansions with respect to a base B instead of 10 , where B is any positive integer strictly greater than 1 . In particular, if we want to find the base 60 expansions used by the Babylonians, we take $B=60$.
SIMPLE EXAMPLE. Consider the fraction $1 / 6$. We could just say $1 / 6=10 / 60$ to see that the base 60 expansion

$$
\frac{1}{6}=0 . b_{1} ; b_{2} ; b_{3} ; b_{4} \cdots
$$

(where the b_{j} are integers between 0 and 59) is equal to $0.10 ; 0 ; 0 ; \cdots$; we are using semicolons to separate the values of the terms here and distinguish the expression from a decimal expansion). However, we can also verifying this using the base 60 version of the preceding rule as follows: If $x=1 / 6=r_{0}$, then $60 x=6=\left[60 r_{0}\right]$. Therefore $b_{1}=60$ and $r_{1}=60-60=0$. But now $b_{2}=\left[60 r_{1}\right]=[0]=0$, and it follows that $b_{2}=0=r_{2}$. Continuing in this manner, we see that $b_{3}=0=r_{3}$ and similarly $b_{j}=0=r_{j}$ for all $j \geq 3$. Here is a slightly less trivial example.
PROBLEM. Convert the ordinary fraction $1 / 40$ to sexagesimal notation.
Before solving this, we note it is equivalent to a questiion which can be asked at the elementary school level: How many minutes and seconds are there in $1 / 40$ of an hour?
SOLUTION. Here $x=r_{0}=1 / 40$ and hence we have $b_{1}=[60 / 40]=1$ and

$$
r_{1}=\frac{60}{40}-\left[\frac{60}{40}\right]=\frac{1}{2}
$$

and at the next step we have $b_{2}=\left[60 r_{1}\right]=30$ and

$$
r_{2}=60 r_{1}-\left[60 r_{1}\right]=30-30=0 .
$$

As in the first example, since the remainder r_{2} is zero it follows that all the subsequent expansion terms b_{k} and r_{k} must also be zero.

Therefore the base 60 expansion of $1 / 40$ is given by $0.1 ; 30[; 0 ; 0$ etc.]. Returning to the elementary reformulation, the answer simply means that $1 / 40$ of an hour is equal to 1 minute and 30 seconds.

TRY THIS: Convert the ordinary fraction $1 / 50$ to sexagesimal notation.
The file base60change2.pdf discusses further examples.

