
2.B. Impossibility of the classical construction problems

Ancient Greek geometry devoted a great deal of effort to construction problems like bisecting
angles, dividing line segments into a given number of equal parts, finding a segment whose length
is the square root of a given segment’s length, constructing regular pentagons, and many others
too numerous to mention. Three specific questions that resisted solutions became topics of great
interest during the fifth century B. C. E. These questions have had an important impact on all of
mathematics for various reasons:

1. Angle trisection. Given an arbitrary angle, find another one whose degree measure is one
third the measure of the original angle.

2. Circle squaring. Given an arbitrary circle, find a square whose area is equal to that of
that circle.

3. Cube doubling. Given an arbitrary cube, find another whose volume is twice that of the
original one.

When Greek mathematicians did not find solutions to these questions using elementary tools
like an unmarked straightedge and compass, they turned to more complicated curves and were
able to solve the problems using these methods. On the other hand, there was always a desire to
find constructions that only required a straightedge and compass, and Plato’s insistence on the use
of such methods was particularly influential.

During the nineteenth century mathematicians showed that none of the three problems above
could be solved using an unmarked straightedge and a compass. These results are often misunder-
stood, so we shall attempt to explain what they mean and how they were obtained.

It is probably best to begin by discussing the meaning of mathematical impossibility. It does
not mean that no one thus far has found an answer to a question, but instead it means that no
one will ever be able to find an answer. The irrationality of

√
2 is a good example. One way of

expressing this is to say that one cannot find positive integers p and q such that
√
2 = p/q. This is

a much stronger statement than an observation that no one has yet been able to find such a pair of
numbers; in fact, the argument shows that if such a pair of numbers existed, then one would reach
an absurd conclusion about the factorization of the numerators and denominators into products of
primes. In particular, if m and n are reduced to least terms, the standard argument shows that
one of these numbers is simultaneously odd and even.

Here is an even more elementary example.

CLAIM. It is impossible to find two even integers whose sum is odd.

Proof. Given two even integers m and n, write them as 2p and 2q Then m+ n = 2(p + q) and
hence m + n is even. Since the sets of even and odd integers are disjoint, it follows that m + n
cannot be odd; in particular, no one will ever find a pair of even integers whose sum is odd.

Reformulation using real numbers and coordinates

The impossibility proofs for the three construction problems are based upon a translation of
the geometric problem into algebra, and to a some extent a reformulation involving coordinate
geometry. We shall be particularly interested in a set of real numbers that we shall call the surds.
This is the smallest subset that contains all the rationals and is closed under addition, subtraction,
multiplication, division and extracting square roots of positive numbers. We shall denote this set
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of numbers by Surds. Further information on surds and more details on many assertions in this
document may be found in Chapter 19 of the following classic text:

E. E. Moise. Elemetary geometry from an advanced standpoint. Third Edition.
Addison-Wesley Advanced Book Program. Addison-Wesley, Reading, MA, 1990. ISBN:
0–201–50867–2.

Classical constructions by straightedge and compass start with some configuration of points
and lines. In the terminology of coordinate geometry, we shall think of the points as given by
ordered pairs of real numbers and the lines by equations of the form Ax + By + C = 0 where
either A 6= 0 or B 6= 0. Let us agree to take normalized coefficients such that A2 + B2 = 1. The
following result can then be established fairly directly using the fact that lines are given by first
degree equations and circles by quadratic equations:

Constructibility criterion. Suppose that one starts with a collection of points and lines such

that the coordinates of the points all lie in Surds and the normalized coefficients of the lines’

equations also lie in Surds. Then any point that is obtained from the original collection by a finite

sequence of elementary constructions will have coordinates that also lie in Surds.

Proving this result essentially requires nothing more than standard coordinate geometry, the
quadratic formula, and some persistence. However, the next step is less elementary and is usually
first established in graduate level algebra courses (it is also in Chapter 19 of Moise’s book).

Surds as roots of rational polynomials. If x ∈ Surds, then x is a root of a nontrivial

polynomial with rational coefficients. In fact, the set of all such polynomials having x as a root

consists of multiples of some minimal polynomial m(t) of least degree, and this degree is a power

of 2.

We shall now explain why these two observations combine to show the impossibility of com-
pleting the classical problems by means of straightedge and compass.

In the case of doubling the cube, if the construction could be carried out then the first result
would imply that the point (21/3, 0) would have surd coordinates. In particular the cube root of 2
would be a surd.

In the case of squaring the circle, if the construction could be carried out then the first result
would imply that the point (

√
π, 0) would have surd coordinates. In particular the number π would

be a surd.

The case of angle trisection requires a longer discussion. If the construction could be carried
out for all angles, then in particular it could be carried out for a 60 degree angle. An angle of this
type can be described using points whose coordinates are surds. In particular, if we take A = (2, 0),
B = (0, 0) and C = (2,

√
3 ) then 6 ABC will be a 60 degree angle. If we could trisect this angle by

means of straightedge and compass, this would mean that we could that the point 2 cos 20◦ would
be a surd.

The impossibility proof then reduces to showing the following:

THEOREM. None of the numbers 21/3, π, cos 20◦ is a surd.

The conclusions for 21/3 and cos 20◦ were established by P. Wantzel (1818–1848) in the eighteen
thirties; after the publication of this work C. F. Gauss (1777–1855) stated that he had known these
results over 30 years earlier, and for numerous reasons this claim is viewed as extremely credible.
Proving the conclusion for π required additional input, and it was completed by F. Lindemann
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(1852–1939) in the eighteen eighties. During the previous decade Ch. Hermite (1822–1901) proved
a corresponding result for the number

e =

∞∑

n=0

1

k!

that plays such an important role in calculus, and Lindemann’s proof relied heavily on Hermite’s
earlier work.

Explanation of how results are shown. The result involving π is the easiest to explain.
Lindemann’s result shows that π is not the root of any nontrivial polynomial; Hermite’s results
prove the same conclusion for e.

Discussion of the remaining two cases will be simplified with references to the following im-
portant and useful result.

FACTORIZATION PRINCIPLE FOR POLYNOMIALS. (Gauss) Suppose that f(x) is a

nonconstant polynomial with integer coefficients that can be factored over the rationals into a product

f(x) = p(x) · q(x) where p and q are polynomials of strictly lower degree. Then there are integral

polynomials p1(x) and q1(x) such that deg p1 = deg p, deg q1 = deg q, and f(x) = p1(x) · q1(x).

This result is often proved in upper level undergraduate algebra courses. One may view this
result as a strong generalization of the fact that

√
n is irrational if the positive integer n is not a

perfect square for the following reasons: If
√
n were a rational number r, then x2 − n would factor

over the rationals as a product (x − r) (x + r), and by the result of Gauss there would also be
a factorization of this sort over the integers. This would mean that x2 − n had an integral root,
which amounts to saying that n is a perfect square. But we were assuming that n was not a perfect
square, so we have a contradiction. The contradiction arises because we assumed that

√
n was

rational, so the latter cannot be true.

We now return to the issue of showing that 21/3 and cos 20◦ are not surds. The result concern-
ing the cube root of 2 is seen as follows. We know this number is a root of the rational polynomial
x3 − 2, and we claim the latter cannot be written as a product of two polynomials of lesser degrees
with rational coefficients. If it could, then the result of Gauss would imply that one could also find
such a factorization involving polynomials with integral coefficients. Since we are working with a
degree 3 polynomial, one of the factors would have to be linear, and since the coefficient of x3 is
1 this linear factor would necessarily be of the form ±x − a for some integer a. It would then
follow that a would be a root of x3 − 2 and that 2 would be a perfect cube over the integers. Since
13 = 1 and n3 ≥ 8 for every integer n > 1, we know this is impossible. Therefore there is no way
of factoring x3 − 2 over the rationals into a product of two polynomials of lower degree.

On the other hand, if 21/3 were a surd then this cubic polynomial would be a multiple of some
rational polynomial whose degree is a power of 2. Since we know that x3 − 2 cannot be written in
this manner, it follows that the cube root of 2 cannot be a surd. In particular, this implies that one
cannot solve the cube duplication problem by means of an unmarked straightedge and compass.

The result concerning cos 20◦ uses similar reasoning but it also requires some information on
realizing this number as the root of a rational polynomial. One obtains the needed information by
means of standard trigonometric identities for computing cos 3 θ in terms of sin θ and cos θ:

cos 3 θ = 4 cos3 θ − 3 cos θ
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If we set θ = 20◦ and α = cos 20◦, then cos 60◦ = 1

2
and the identity imply the following equation:

8α3 − 6α − 1 = 0

Proving that α is not a surd is equivalent to proving that 2α is not a surd; this is helpful because
if β = 2α then we have

β3 − 3β − 1 = 0 .

Once again we shall be finished if this is an irreducible polynomial over the rational numbers. As in
the previous case, it is only necessary to show that the polynomial x3−3x−1 cannot have a linear
factor with integer coefficients, and this can be checked directly as follows: If the linear integral
polynomial cx+d was a factor of the cubic polynomial x3−3x−1 then each coefficient would have
to be either +1 or −1 and none of the polynomials of this form can divide x3 − 3x − 1 (since ± 1
is not a root of the latter). Therefore we conclude that cos 20◦ cannot be a surd, and this shows
that one cannot trisect a 60 degree angle by means of unmarked straightedge and compass.

It is important to note that some angles can be trisected using straightedge and compass. For
example, one can trisect a 45 degree angle because it is possible to construct a 45 degree angle, a
60 degree angle, and an angle whose degree measure is the difference between those of the first two
— a difference that is merely 15 degrees. The point of the problem is to be able to carry out the
construction for all angles.

Comment on the regular pentagon

We have mentioned that a regular pentagon can be constructed using straightedge and compass.
In particular, this implies that the sine and cosine of 36◦ = 1

5
· 180◦ must be a surd. In fact these

numbers are closely related to the roots of the quadratic equation x2 + x− 1 = 0, which are given
by

−1

2
±

√
5

2

that have had mystical attractions ever since the time of the ancient Greeks (the recent book on
the Da Vinci Code is a very current example).

In order to verify that cos 36◦ is a surd one must begin with the appropriate formula expressing
cos 5 θ in terms of sin θ and cos θ. This can be derived by direct calculation (a quicker alternative
using complex numbers would be to note that cos 5 θ is the real part of

exp(5 i θ) = exp(i θ)5 = (cos θ + i sin θ)5

and evaluate it in terms of sin θ and cos θ using these equations). Here is the end result:

cos 5 θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ

If we set θ = 18◦, so that 2 θ = 36◦ and 5 θ = 90◦, then it follows that α = cos 18◦ satisfies the
equation

16α5 − 20α3 + 5α = 0

and since α 6= 0 we conclude that β = 2α satisfies the equation

β4 − 5β2 + 5 = 0 .
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The Quadratic Formula then implies that

β2 =
5

2
±

√
5

2

and since β = 2 cos 18◦ it follows that β2 must be the root with the positive sign. Therefore we
conclude that

cos2 18◦ =
β2

4
=

5 +
√
5

8

and using the identity cos 2 θ = 2 cos2 θ − 1 we obtain the following formula for cos 36◦:

cos 36◦ =
1 +

√
5

4

In other words, the cosine of 36◦ is half the larger root of the equation x2 + x− 1 = 0.

Most numbers of the form cos(180◦/n) are not expressible as surds. In fact, results of Gauss
show this only happens if n is product 2k p1 · · · pm where each pj is an odd prime of the form
2sj + 1. Clearly the primes 3 and 5 have this form, and the next such prime is 17; more generally,
if 2s +1 is a prime then s must be a power of 2, and thus the next prime after 17 in this list is 257.
The result of Gauss has the following geometric implication: Given values of n are the only ones
for which a regular n-gon can be constructed using an unmarked straightedge and compass.

Common misconceptions and mistakes

Over the 24 centuries since the classical construction problems first attracted attention in
ancient Greece, many people have incorrectly claimed or believed that they had solved one or more
of these problems. Others have felt it is short-sighted or presumptuous for mathematicians to state
that the problems are impossible to solve. Therefore it seems worthwhile to discuss some points
that arise repeatedly in the discussion of these “impossible” construction problems.

Probably the most important source of misunderstanding is the insistence that the construction
be carried out using only an unmarked straightedge and a collapsible compass. There are many
solutions of each construction problem if one relaxes these requirements even slightly. For example,
if one merely allows the use of a straightedge with two markings (an extremely primitive ruler!),
then one can construct angle trisectors, and in fact this was known to Archimedes in the Third
Century B. C. E.

Before discussing other misconceptions associated to the classical construction problems, some
comments on the straightedge and compass limitation may be worthwhile. When Plato formulated
the restriction to unmarked straightedges and compasses, he knew that solutions were possible if
one broadened the list of tools that could be used, but he felt that the introduction of numerous
mechanical devices compromised the purity of mathematics. Even if one rejects this view, there are
often good reasons to search for ways of solving mathematical problems that are somehow restricted.
Some are practical (one does not always have unlimited resources), others are conceptual (e.g., the
principle of Ockham’s razor: One should not increase, beyond what is necessary, the number of
entities required to explain anything), and still others are based upon past experience (sometimes
the restricted methods turn out to be useful for other, unanticipated purposes — this is an aspect
of what some call the “unreasonable effectiveness of mathematics”).

Another frequent misunderstanding arises from the concept of mathematical impossibility.
Throughout history people have said that certain things were impossible and have been proven
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wrong. Why should the impossibility statements for the three classical construction problems be
any more reliable than, say, earlier assertions that objects like airplanes could never be constructed?

Part of the answer goes back to the strict rules for construction by straightedge and compass.
To illustrate the difference, it is good to consider one prominent mathematician’s claim in the
late nineteenth century that airplanes could never be built. The work assumed that the only way
to generate sufficient power would be to use a steam engine, which is extremely heavy. In fact,
the important breakthrough in powered flight was the idea of using petroleum fueled engines to
produce the power needed to get off the ground; no one has ever built an airplane powered by a
steam engine, but for our purposes the value of this statement is entirely theoretical.

Another response is that one wants exact constructions; from the perspective of the problem,
it is not enough to be able to do something within an arbitrarily small degree of accuracy. It is
possible to solve all these problems to an arbitrarily high degree of approximation by unmarked
straightedge and compass. For example, one can see this by considering the decimal expansions
of real numbers like the cube root of 2, the cosine of 20◦, and the number

√
π. In each case one

can obtain an arbitrarily good approximation by a finite decimal fraction (which may have an
astronomical number of terms), and there is no problem constructing segments of length 21/3 and√
π from a segment of unit length by the classical methods. If we want to trisect an arbitrary angle

to any desired degree of accuracy, one systematic way of proceeding is to use the geometric series

1

3
=

∞∑

m=1

1

4m

and the fact that one can bisect angles by straightedge and compass. Repeated bisections of an
angle 6 ABC with measure θ will yield a sequece of angles 6 ABCn whose measures are equal to the
first n terms of the infinite sum, and these measures approximate 1

3
θ to an arbitrarily high degree

of accuracy if we take n to be sufficiently large.

A third source of difficulties involves the precise meaning of mathematical impossibility. As
noted before, it does not mean that people have simply given up on a problem but maybe some
future genius will succeed where others have failed. Instead, it means that if the problem had a
solution, then one could also do something else that contradicts known facts. The irrationality
proof for

√
2 discussed earlier in this document is an excellent example.

The preceding discussion has an important consequence: If anyone produces an argument

purporting to solve one of the classical construction problems by unmarked straightedge and compass,

then there must be a mistake somewhere in the argument. However, finding these mistakes in any
given argument can be extremely difficult. A very simple example of a fallacious argument is
discussed in another supplement to the main unit.

Some online references

Further discussion of mathematical impossibility and trisections is given in the first online
document listed below. The second one by the same author considers scientific fallacies more
generally, and the third discusses another relatively classical construction problem from late Greek
and Arab mathematics (the Al-Hazen Billiard Problem) whose impossibility was not proven until
fairly recently.

http://www.uwgb.edu/dutchs/PSEUDOSC/trisect.HTM

http://www.uwgb.edu/dutchs/pscindex.htm

http://mathworld.wolfram.com/AlHazensBilliardProblem.html
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