The Vertical Angle Theorem

Here is the standard proof of this result using synthetic (= classical Greek) methods. The proof of this result is attributed to Thales of Miletus. All of the geometrical notation in this discussion is described in the following file:

http://math.ucr.edu/~res/math153-2020/week1/history00g.pdf

Proposition. (Vertical Angle Theorem) Let A, B, C, D be four distinct points in the plane such that the betweenness relations $\mathbf{A} * \mathbf{X} * \mathbf{C}$ and $\mathbf{B} * \mathbf{X} * \mathbf{D}$ are valid. Then the measures of the vertical angles satisfy $|\angle A X B|=|\angle C X D|$.

Proof. Two applications of the Supplemental Angle Identity (the sum of their measures is $\mathbf{1 8 0}$ degrees) imply that

$$
|\angle A X B|+|\angle A X D|=180=|\angle D X A|+|\angle D X C|
$$

and if we subtract $|\angle A X D|=|\angle D X A|$ from the left and right hand side we obtain

$$
|\angle A X B|=|\angle D X C|
$$

which is equivalent to the stated conclusion because $\angle \mathrm{CXD}=\angle \mathrm{DXC}$.

