EQUAL AND UNEQUAL ANGLES

RECALL: Note that the statement $\angle A B C=\angle D E F$ is much stronger than saying the two angles have the same measures (in symbols, ${ }^{9} \angle A B C '=9 \angle D E F 9$); it means that the two angles consist of exactly the same points.

Consider the following example:

In this drawing ${ }^{9} \angle A B C$ ' $={ }^{9} \angle A C B '$ but the two angles are not equal as sets, so it would be incorrect to write $\angle \mathrm{ABC}=\angle \mathrm{ACB}$. However, the following statements are true (in addition to $\angle C B A=\angle A B C):$

$$
\angle \mathrm{ABC}=\angle \mathrm{XBC}=\angle \mathrm{YBC}
$$

One can also formulate similar identities using points on the open ray (BC as well. For example, if \mathbf{W} is a point on ($B C$ then we also have identities of the form $\angle A B C=\angle A B W=$ $\angle X B W=\angle Y B W$.

