2.C.a. More on the purported "trisection"

Here is a conceptual and general proof for the inequality

$$
\frac{1}{3} \tan x>\tan \frac{x}{3}
$$

which is valid for $0<x<\frac{\pi}{2}$ and was mentioned in history02.pdf. We shall do this using basic results from first year calculus.

We know that

$$
\frac{1}{3} \tan 0=0=\tan \frac{0}{3}
$$

so by the Mean Value Theorem it is enough to veriify that

$$
\frac{d}{d x}\left(\frac{1}{3} \tan x-\tan \frac{x}{3}\right)>0
$$

for $0<x<\frac{\pi}{2}$. If we write out this derivative explicitly using the Chain Rule, we see that it is equal to

$$
\frac{1}{3} \sec ^{2} x-\frac{1}{3} \sec ^{2} \frac{x}{3}
$$

so it suffices to check that this expression is positive for the given values of x. Now $\sec x=1 / \cos x$, and since $\cos x$ is a strictly decreasing function between 0 and $\frac{\pi}{2}$ it follows that $\sec x$ and $\sec ^{2} x$ are strictly increasing for $0 \leq x<\frac{\pi}{2}$. This implies that

$$
\frac{1}{3} \sec ^{2} x-\frac{1}{3} \sec ^{2} \frac{x}{3}>0
$$

for $0<x<\frac{\pi}{2}$, and as previously noted this is exactly what we needed in order to prove the inequality in the first paragraph.■

