The mean proportional construction

Given two positive real number \boldsymbol{u} and \boldsymbol{v}, the mean proportional of \boldsymbol{u} and \boldsymbol{v} is defined by the equation $\boldsymbol{x}^{2}=\boldsymbol{u} \boldsymbol{v}$. A basic construction in Euclidean geometry gives a geometrical way of constructing a mean proportional by straightedge and compass constructions. If we take $\boldsymbol{v}=\mathbf{1}$ then the construction specializes to yield a geometric construction for the square root of \boldsymbol{u}. The starting point is to construct segments [AB] and $[B C]$ such that $A * B * C$ with $|A B|=u$ and $|B C|=v$.

In a plane containing the line $A C$, construct a semicircle whose diameter equals $|A C|$ $=u+v$ and also construct a line in this plane which is perpendicular to $\boldsymbol{A C}$ at \boldsymbol{B}. The point \boldsymbol{B} lies inside the circle, so the perpendicular line must meet the semicircle at some point D.

CLAIM: $\boldsymbol{x}=|\mathbf{B D}|$ is the mean proportional of \boldsymbol{u} and \boldsymbol{v}.
PROOF: The angle DAC is a right angle because it is inscribed in a semicircle. Thererfore we have right triangle similarities

$$
\triangle D A C \sim \triangle B A D \quad \text { and } \quad \triangle D A C \sim \triangle B D C
$$

(by angle - angle similarity) which yield the proportionality equation $|B D| /|B A|=$ $|B C| /|B D|$. If we plug in the known distances between these points the equation reduces to $x / u=v / x$ or equivalently $x^{2}=u v$.

Note. Similarity statements of the form $\triangle A B C \sim \triangle D E F$ implicitly assume that the vertices are ordered compatibly (so the first vertex on the left corresponds to the first vertex on the right, etc.). For example, the similarity statements $\triangle A B C \sim \triangle D E F$ and $\triangle A B C \sim \triangle D F E$ are not logically equivalent; the same sort of considerations arise in the definition of congruent triangles.

