Some examples for the Euclidean algorithm

а	b	q	r
284	220	1	64
220	64	3	28
64	28	2	8
28	8	3	4
8	4	2	0
67890	12345	5	6165
12345	6165	2	15
6165	15	411	0
123456789	951	129817	822
951	822	1	129
822	129	6	48
129	48	2	33
48	33	1	15
33	15	2	3
15	3	5	0

Here are three examples with the initial choices of (a, b) = (284,220), (67890,12345) and (123456789,951). One finds q and r by long division. At the next line, take the new a to be the previous b and the new b to be the previous b. Eventually the iteration of this process will yield a value of b for the remainder b, at which point the iteration stops, and the greatest common divisor b will be the remainder from the next to last iteration. For the three examples, the greatest common divisors are b, b, and b respectively.

One can now work backwards to write d = sa + tb for suitable integers a and b:

$$4 = 28 - 8*3$$
, $8 = 64 - 28*2$, $28 = 220 - 64*3$, $64 = 284 - 220$ imply
 $28 = 220 - 64*3 = 220 - (284 - 220)*3 = 220*4 - 284*3$
 $8 = 64 - 28*2 = (284 - 220) - (220*4 - 284*3)*2 = 7*284 - 9*220$
 $4 = 28 - 8*3 = (220*4 - 284*3) - 3*(7*284 - 9*220) = 31*220 - 24*284$