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On the other hand, he found r could not be represented as a quotient
r = a/b of integers, for (a/b)* = 2 would imply a*> = 2b°. By the prime
factorization theorem, 2 divides a’ just twice as often as it divides
a—hence an even number of times; similarly, it divides 2b? an odd
number of times. Therefore, a> = 2b? has no solution in integers.

From this “dilemma of Pythagoras” one can escape only by creating
irrational numbers: numbers which are not quotients of integers.

Similar arguments show that both the ratio V3 of the length of a
diagonal of a cube C to the length of its side, and the ratio \35 of the
length of a side of C to the side of a cube having half as much volume,
are irrational numbers. These results are special cases of Theorem 10 of
§3.7.

Further irrational numbers are 7 (which thus cannot be exactly Z or
even 3.1416), e, and many others. In Chap. 14 we shall prove that the
vast majority of real numbers not only are irrational, but also (unlike V2)
even fail to satisfy any algebraic equation. To answer the fundamental
question “what is a real number?” we shall need to use entirely new
ideas. :

One such idea is that of continuity—the idea that if the real axis is
divided into two segments, then these segments must touch at a common
frontier point. A second such idea is that the ordered field Q of rational
numbers is dense in the real field, so that every real number is a limit of
one or more sequences of rational numbers (e.g., of finite decimal
approximations correct to n places). This idea can also be expressed in
the statement

(2) If x <y, then there exists m/n € Q such that x < m/n < y.

This property of real numbers was first recognized by the Greek
mathematician Eudoxus. Thinking of x = a:b and y = c:d as ratios of
lengths of line segments, integral multiples n -a of which could be
formed geometrically, Eudoxus stipulated that (a :b) = (c:d) if and only
if, for all positive integers m and n,

(3) na > mb implies nc > md, na < mb implies nc < md.

The two preceding ideas can be combined into a single postulate of
completeness, which also permits one to construct the real field as a
natural extension of the ordered field Q. This “completeness” postulate is
analogous to the well-ordering postulate for the integers (§1.4): both deal
with properties of infinite sets, and so are nonalgebraic. As we shall see,
this completeness postulate is needed to establish certain essential alge-
braic properties of the real field (e.g., that every positive number has a
square root).



